[1] Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74: 12-49. [2] Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer[J]. Biomed Pharmacother, 2023, 169: 115891. doi:10.1016/j.biopha.2023.115891. [3] Zhang Q, Shi Y, Liu S, et al. EZH2/G9a interact to mediate drug resistance in non-small-cell lung cancer by regulating the SMAD4/ERK/c-Myc signaling axis[J]. Cell Rep, 2024, 43: 113714. doi:10.1016/j.celrep.2024.113714. [4] Miller KD, O'connor S, Pniewski KA, et al. Acetate acts as a metabolic immunomodulator by bolstering T-cell effector function and potentiating antitumor immunity in breast cancer[J]. Nat Cancer, 2023, 4: 1491-1507. [5] Yoshimura Y, Araki A, Maruta H, et al. Molecular cloning of rat acss3 and characterization of mammalian propionyl-CoA synthetase in the liver mitochondrial matrix[J]. J Biochem, 2017, 161: 279-289. [6] Jia Z, Chen X, Chen J, et al. ACSS3 in brown fat drives propionate catabolism and its deficiency leads to autophagy and systemic metabolic dysfunction[J]. Clin Transl Med, 2022, 12: e665. doi:10.1002/ctm2.665.doi: 10.3389/fphys.2017.00519. [7] Chang WC, Cheng WC, Cheng BH, et al. Mitochondrial acetyl-CoA synthetase 3 is biosignature of gastric cancer progression[J]. Cancer Med, 2018, 7: 1240-1252. [8] Zhou L, Song Z, Hu J, et al. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3[J]. Theranostics, 2021, 11: 841-860. [9] Zhang J, Duan H, Feng Z, et al. Acetyl-CoA synthetase 3 promotes bladder cancer cell growth under metabolic stress[J]. Oncogenesis, 2020, 9: 46. doi:10.1038/s41389-020-0230-3. [10] Wang L, Yuan H, Li W, et al. ACSS3 regulates the metabolic homeostasis of epithelial cells and alleviates pulmonary fibrosis[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870: 166960. doi:10.1016/j.bbadis.2023.166960. [11] Rodríguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA, et al. Genome editing:a perspective on the applica-tion of CRISPR/Cas9 to study human diseases(Review)[J]. Int J Mol Med, 2019, 43: 1559-1574. [12] Klermund J, Rhiel M, Kocher T, et al. On- and off-target effects of paired CRISPR-Cas nickase in primary human cells[J]. Mol Ther, 2024, 32: 1298-1310. [13] Lorenzo D, Esquerda M, Palau F, et al. Ethics and genomic editing using the Crispr-Cas9 technique: challenges and conflicts[J]. NanoEthics, 2022, 16: 313-321. [14] Manghwar H, Li B, Ding X, et al. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects[J]. Adv Sci(Weinh), 2020, 7: 1902312.doi:10.1002/advs.201902312. |