| [1] |
Liu E, Kopani K. Rapidly progressive cataract formation associated with non-small-cell lung cancer therapy[J]. Cataract Refract Surg, 2016, 42: 1838-1840.
|
| [2] |
Solebo AL, Hammond CJ, Rahi JS. Improving outcomes in congenital cataract[J]. Nature, 2018, 556: E1-E2.
|
| [3] |
张潇, 戴荣平, 张美芬. 手术模拟器在白内障手术训练中的应用[J]. 基础医学与临床, 2018, 38: 1661-1664.
|
| [4] |
Wang KJ, Wang JX, Wang JD, et al. Congenital coralliform cataract is the predominant consequence of a recurrent mutation in the CRYGD gene[J]. Orphanet J Rare Dis, 2023, 18: 200. doi:10.1186/s13023-023-02816-0.
|
| [5] |
Ajay Pande, Kalyan S. Ghosh, Priya R. Banerjee, et al.Increase in surface hydrophobicity of the cataract-associated P23T mutant of human γD-crystallin is responsible for its dramatically lower, retrograde solubility[J]. Biochemistry, 2010, 49: 6122-6129.
|
| [6] |
Cai SP, Lu L, Wang XZ, et al. A mutated CRYGD associated with congenital coralliform cataracts in two Chinese pedigrees[J]. Int J Ophthalmol, 2021, 14: 800-804.
|
| [7] |
Shiels A. Through the cat-map gateway: a brief history of cataract genetics[J]. Genes (Basel), 2024, 15: 785. doi:10.3390/genes15060785
|
| [8] |
Zhai Y, Li J, Yu W, et al. Targeted exome sequencing of congenital cataracts related genes: broadening the mutation spectrum and genotype-phenotype correlations in 27 Chinese Han families[J]. Sci Rep, 2017, 7: 1219. doi:10.1038/s41598-017-01182-9.
|
| [9] |
Yang G, Chen Z, Zhang W, et al. Novel mutations in CRYGD are associated with congenital cataracts in Chinese families[J]. Sci Rep, 2016, 6: 18912. doi:10.1038/srep18912.
|
| [10] |
Ghisaidoobe AB,Chung SJ. Intrinsic tryptophan fluores-cence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques[J]. Int J Mol Sci, 2014, 15: 22518-22538.
|
| [11] |
Zhang W, Liu M, Yu L, et al. Perturbation effect of single polar group substitution on the self-association of amphiphilic peptide helices[J]. J Colloid Interface Sci, 2022, 610: 1005-1014.
|