[1] |
Christofides A, Strauss L, Yeo A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol, 2022, 23: 1148-56. doi:10.1038/s41590-022-01267-2.
|
[2] |
Xia Y, Rao L, Yao H, et al. Engineering macrophages for cancer immunotherapy and drug delivery[J]. Adv Mater, 2020, 32: e2002054. doi:10.1002/adma.202002054.
|
[3] |
Kerzel T, Giacca G, Beretta S, et al. In vivo macrophage engineering reshapes the tumor microenvironment leading to eradication of liver metastases[J]. Cancer Cell, 2023. doi:10.1016/j.ccell.2023.09.014.
|
[4] |
Lei A, Yu H, Lu S, et al. A second-generation M1-polarized CAR macrophage with antitumor efficacy[J]. Nat Immunol, 2024, 25: 102-16. doi:10.1038/s41590-023-01687-8.
|
[5] |
Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nat Biotechnol, 2020, 38: 947-53. doi:10.1038/s41587-020-0462-y.
|
[6] |
Wang X, Su S, Zhu Y, et al. Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors[J]. Nat Commun, 2023, 14: 5778. doi:10.1038/s41467-023-41470-9.
|
[7] |
Kim H. The transcription factor MafB promotes anti-inflammatory M2 polarization and cholesterol efflux in macrophages[J]. Sci Rep, 2017, 7: 7591. doi:10.1038/s41598-017-07381-8.
|
[8] |
Soucie EL, Weng Z, Geirsdottir L, et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells[J]. Science, 2016, 351: aad5510. doi:10.1126/science.aad5510.
|
[9] |
Goudot C, Coillard A, Villani AC, et al. Aryl hydrocarbon receptor controls monocyte differentiation into dendritic cells versus macrophages[J]. Immunity, 2017, 47: 582-96. doi:10.1016/j.immuni.2017.08.016.
|
[10] |
Tedesco S, De Majo F, Kim J, et al. Convenience versus biological significance: Are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization?[J]. Front Pharmacol, 2018, 9: 71. doi:10.3389/fphar.2018.00071.
|