[1] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337: 816-821.
|
[2] |
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152: 1173-1183.
|
[3] |
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154: 442-451.
|
[4] |
Zalatan JG, Lee ME, Almeida R, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160: 339-350.
|
[5] |
Campa CC, Weisbach NR, Santinha AJ, et al. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts[J]. Nat Methods, 2019, 16: 887-893.
|
[6] |
Alerasool N, Segal D, Lee H, et al. An efficient KRAB domain for CRISPRi applications in human cells[J]. Nat Methods, 2020, 17: 1093-1096.
|
[7] |
Xu X, Chemparathy A, Zeng L, et al. Engineered miniature CRISPR-Cas system for mammalian genome regula-tion and editing[J]. Mol Cell, 2021, 81: 4333-4345.
|
[8] |
Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362: 839-842.
|
[9] |
Yeo NC, Chavez A, Lance-Byrne A, et al. An enhanced CRISPR repressor for targeted mammalian gene regulation[J]. Nat Methods, 2018, 15: 611-616.
|
[10] |
Jensen KT, Fløe L, Petersen TS, et al. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency[J]. FEBS Lett, 2017,591: 1892-1901.
|
[11] |
Takeda SN, Nakagawa R, Okazaki S, et al. Structure of the miniature type V-F CRISPR-Cas effector enzyme[J]. Mol Cell, 2021, 81: 558-570.
|
[12] |
Kang K, Huang L, Li Q, et al. An improved Tet-on system in microRNA overexpression and CRISPR/Cas9-mediated gene editing[J]. J Anim Sci Biotechnol, 2019, 10: 43. doi: 10.1186/s40104-019-0354-5.
|