[1] Long JM, Holtzman DM.Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179: 312-339. [2] Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease[J]. Lancet, 2021, 397: 1577-1590. [3] Liu XY, Yang LP, Zhao L.Stem cell therapy for Alzheimer’s disease[J]. World J Stem Cells, 2020, 12: 787-802. [4] DE Strooper B, Karran E.The cellular phase of Alzheimer’s disease[J]. Cell, 2016, 164: 603-615. [5] Cribbs DH, Berchtold NC, Perreau V, et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study[J]. J Neuroinflammation, 2012, 9: 179. doi:10.1186/1742-2094-9-179. [6] Macdonald R, Barnes K, Hastings C, et al. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically?[J]. Biochem Soc Trans, 2018, 46: 891-909. [7] Wingo AP, Liu Y, Gerasimov ES, et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis[J]. Nat Genet, 2021, 53: 143-146. [8] Yan S, Zheng C, Paranjpe MD, et al. Association of sex and APOE ε4 with brain tau deposition and atrophy in older adults with Alzheimer’s disease[J]. Theranostics, 2020, 10: 10563-10572. [9] Rasmussen KL, Nordestgaard BG, Frikke-schmidt R, et al. An updated Alzheimer hypothesis: complement c3 and risk of Alzheimer’s disease-a cohort study of 95,442 individuals[J]. Alzheimers Dement, 2018, 14: 1589-1601. [10] Lim YY, Kalinowski P, PietrzakI RH, et al. Association of β-amyloid and apolipoprotein eε4 with memory decline in preclinical Alzheimer aisease[J]. JAMA Neurol, 2018, 75: 488-494. [11] Sung PS, Lin PY, Liu CH, et al. Neuroinflammation and neurogenesis in Alzheimer’s disease and potential therapeutic approaches[J]. Int J Mol Sci, 2020, 21:701. doi:10.3390/ijms21030701. [12] Serrano-pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. Lancet Neurol, 2021, 20: 68-80. [13] Madrazo I, Kopyov O, Avila-Rodriguez MA, et al. Transplantation of human neural progenitor cells (NPC) into putamina of parkinsonian patients: a case series study, safety and efficacy four years after surgery[J]. Cell Transplant, 2019, 28: 269-285. [14] Boese AC, Hamblin MH, Lee JP.Neural stem cell therapy for neurovascular injury in Alzheimer’s disease[J]. Exp Neurol, 2020, 324: 113112. doi:10.1016/j.expneurol.2019.113112. [15] Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction[J]. Nat Med, 2019, 25: 270-276. [16] Zhang Q, Wu HH, Wang Y, et al. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease[J]. J Neurochem, 2016, 136: 815-825. [17] Kim JA, Ha S, Shin KY, et al. Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer’s disease mouse model[J]. Cell Death Dis, 2015, 6: e1789. doi:10.1038/cddis.2015.138. [18] Moreno-Jimenez EP, Flor-garcia M, Terreros-Roncal J, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease[J]. Nat Med, 2019, 25: 554-560. [19] Sorrells SF, Paredes MF, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults[J]. Nature, 2018, 555: 377-381. [20] Boldrini M, Fulmore CA, Tartt AN, et al. Human hippocampal neurogenesis persists throughout aging[J]. Cell Stem Cell, 2018, 22: 589-599. [21] Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease[J]. Proc Natl Acad Sci U S A, 2009, 106: 13594-13599. |