Basic & Clinical Medicine ›› 2023, Vol. 43 ›› Issue (6): 998-1002.doi: 10.16352/j.issn.1001-6325.2023.06.0998
• Mini Reviews • Previous Articles Next Articles
CHAI Yaru1, DENG Yuting2, DAI Hongyan2, GUAN Jun3*
Received:
2022-04-29
Revised:
2022-07-25
Online:
2023-06-05
Published:
2023-05-31
Contact:
*guanjun@medmail.com.cn
CLC Number:
CHAI Yaru, DENG Yuting, DAI Hongyan, GUAN Jun. Research progress on the role of Klotho in heart failure[J]. Basic & Clinical Medicine, 2023, 43(6): 998-1002.
[1] | Olejnik A, Krzywonos-Zawadzka A, Banaszkiewicz M, et al. Klotho protein contributes to cardioprotection during ischaemia/reperfusion injury[J]. J Cell Mol Med, 2020, 24: 6448-6458. |
[2] | Xu Z, Zheng S, Feng X, et al. Klotho gene improves oxidative stress injury after myocardial infarction[J] 2021, 21: 52. doi: 10.3892/etm.2020.9484. |
[3] | Oishi H, Doi S, Nakashima A, et al. Klotho overexpres-sion protects against renal aging along with suppression of transforming growth factor-β1 signaling pathways[J]. Am J Physiol Renal Physiol, 2021, 321: F799-F811. |
[4] | Akasaka-Manya K, Manya H, Nadanaka S, et al. Decreased ADAM17 expression in the lungs of α-Klotho reduced mouse[J]. J Biochem, 2020, 167: 483-493. |
[5] | Wang X, Zhang G, Dasgupta S, et al. ATF4 protects the heart from failure by antagonizing oxidative stress[J]. Circ Res, 2022, 131: 91-105. |
[6] | Song S, Si LY. Klotho ameliorated isoproterenol-induced pathological changes in cardiomyocytes via the regulation of oxidative stress[J]. Life Sci, 2015, 135: 118-123. |
[7] | Zhu H, Gao Y, Zhu S, et al. Klotho improves cardiac function by suppressing reactive oxygen species (ROS) mediated apoptosis by modulating Mapks/Nrf2 signaling in doxorubicin-induced cardiotoxicity[J]. Med Sci Monit, 2017, 23: 5283-5293. |
[8] | Chen K, Wang S, Sun QW, et al. Klotho deficiency causes heart aging via impairing the Nrf2-GR pathway[J]. Circ Res, 2021, 128: 492-507. |
[9] | Hui H, Zhai Y, Ao L, et al. Klotho suppresses the inflammatory responses and ameliorates cardiac dysfunction in aging endotoxemic mice[J]. Oncotarget, 2017, 8: 15663-15676. |
[10] | Lv J, Chen J, Wang M, et al. Klotho alleviates indoxyl sulfate-induced heart failure and kidney damage by promoting M2 macrophage polarization[J]. Aging (Albany NY), 2020, 12: 9139-9150. |
[11] | Wang Y, Wang K, Bao Y, et al. The serum soluble Klotho alleviates cardiac aging and regulates M2a/M2c macrophage polarization via inhibiting TLR4/Myd88/NF-κB pathway[J]. Tissue Cell, 2022, 76: 101812. doi: 10.1016/j.tice.2022.101812. |
[12] | Xie J, Cha SK, An SW, et al. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart[J]. Nat Commun, 2012, 3: 1238. doi: 10.1038/ncomms2240. |
[13] | Tang G, Shen Y, Gao P, et al. Klotho attenuates isoproterenol-induced hypertrophic response in H9C2 cells by activating Na(+)/K(+)-ATPase and inhibiting the reverse mode of Na(+)/Ca(2+)-exchanger[J]. In Vitro Cell Dev Biol Anim, 2018, 54: 250-256. |
[14] | Chen WY. Soluble alpha-Klotho alleviates cardiac fibrosis without altering cardiomyocytes renewal[J]. Int J Mol Sci, 2020, 21: 2186. doi: 10.3390/ijms21062186. |
[15] | Ding J, Tang Q, Luo B, et al. Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway[J].Eur J Pharmacol, 2019, 859: 172549. doi: 10.1016/j.ejphar.2019.172549. |
[16] | Li JM, Chen FF, Li GH, et al. Soluble Klotho-integrin β1/ERK1/2 pathway ameliorates myocardial fibrosis in diabetic cardiomyopathy[J].FEBS J, 2021, 35: e21960. doi: 10.1096/fj.202100952R. |
[17] | Suassuna PGA, Cherem PM, de Castro BB, et al. αKlotho attenuates cardiac hypertrophy and increases myocardial fibroblast growth factor 21 expression in uremic rats[J]. Exp Biol Med (Maywood), 2020, 245: 66-78. |
[18] | Gao G, Chen W, Yan M, et al. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling[J]. Int J Mol Med, 2020, 45: 195-209. |
[19] | Liao LZ, Chen ZC, Wang SS, et al. Klotho deficiency causes cardiac ageing by impairing autophagic and activating apoptotic activity[J]. Eur J Pharmacol, 2021, 911: 174559. doi: 10.1016/j.ejphar.2021.174559. |
[20] | Chang YW, Song ZH, Chen CC. FAK regulates cardiomyocyte mitochondrial fission and function through Drp1[J]. FEBS J, 2022, 289: 1897-1910. |
[21] | Zhuang X, Sun X, Zhou H, et al. Klotho attenuated Doxorubicin-induced cardiomyopathy by alleviating Dynamin-related protein 1-mediated mitochondrial dysfunc-tion[J]. Meth Ageing Dev, 2021, 195: 111442. doi: 10.1016/j.mad.2021.111442. |
[22] | Zhu X, Lu X, Yin T, et al. Renal function mediates the association between Klotho and congestive heart failure among middle-aged and older individuals[J]Front Cardiovasc Med, 2022, 9: 802287. doi: 10.3389/fcvm.2022.802287. |
[23] | 张志敏, 苟丽沙, 马丽群, 等. 达格列净降低心力衰竭大鼠心肌内质网应激并缓解左室重构.[J]. 基础医学与临床, 2021, 41: 1742-1748. |
[24] | Kale A, Sankrityayan H, Anders HJ, et al. Klotho: A possible mechanism of action of SGLT2 inhibitors preventing episodes of acute kidney injury and cardiorenal complications of diabetes[J]. Drug Discov Today, 2021, 26: 1963-1971. |
[25] | Taneike M, Nishida M, Nakanishi K, et al. Alpha-Klotho is a novel predictor of treatment responsiveness in patients with heart failure[J]. Sci Rep, 2021, 11: 2058. doi: 10.1038/s41598-021-81517-9. |
[1] | HU Chuanli, HE Xiaosong, ZHAO Jiang, LI Hua. Heart failure prediction model based on machine learning algorithms [J]. Basic & Clinical Medicine, 2024, 44(6): 845-852. |
[2] | YANG Yang, ZHANG Yarong, YANG Hongqin, WANG Jing, ZHAO Hongmei. Research progress of phosphodiesterase 5 in heart failure [J]. Basic & Clinical Medicine, 2024, 44(5): 724-728. |
[3] | WANG Yingchen, SUN Liqun. Progress on application of dipeptidyl peptidase Ⅲ in the treatment of sepsis [J]. Basic & Clinical Medicine, 2023, 43(1): 196-199. |
[4] | FAN Jia-sai, DU Yi-fei, XU Jia-ying, CHEN Si-zhen, GAO Yong-hui, REN Jing-yi. Construction of a TCM and Western combination model for prognostic evaluation of chronic heart failure based on TCM syndrome elements and machine learning [J]. Basic & Clinical Medicine, 2022, 42(8): 1169-1175. |
[5] | XIONG Hao, YUAN Fang. Research progress on vascular calcification mechanism for chronic kidney disease [J]. Basic & Clinical Medicine, 2022, 42(7): 1124-1128. |
[6] | LIU Feng-yu, HAN Wei. Research progress on the role of myocardial cell calcium homeostasis dysregulation in heart failure [J]. Basic & Clinical Medicine, 2022, 42(3): 502-506. |
[7] | WANG Fang, DONG Zhe, SUN Yi-hong, REN Jing-yi, LI Jing, ZHOU Yi-feng, ZHENG Jin-gang. Analyses of factors influencing myocardial fibrosis in non-ischemic heart failure patients [J]. Basic & Clinical Medicine, 2021, 41(3): 346-351. |
[8] | ZHANG Zhi-min, GUO Li-sha, MA Li-qun, REN Ke, LU Jun, WEI Xing, LI Hui-jie, ZHOU Sheng-hua. Dapagliflozin decreases myocardial endoplasmic reticulum stress and relieves left ventricular remodeling in rats with heart failure [J]. Basic & Clinical Medicine, 2021, 41(12): 1742-1748. |
[9] | LIU Ying-xian, SONG Yan-jun, CHEN Wei, LIN Xue, LAI Jin-zhi, LI Jing-yi, WU Wei. Efficacy and safety evaluation of ivabradine in patients with non-ischemic heart failure [J]. Basic & Clinical Medicine, 2021, 41(11): 1637-1642. |
[10] | YOU Xu, ZHU Xiao-fang, HU Yun-peng, GONG Yang, ZHAO Lei. Effects of total astragalosides on cardiomyocyte apoptosis and mitochondrial membrane potential in rats with heart failure [J]. Basic & Clinical Medicine, 2020, 40(9): 1218-1223. |
[11] | . EGB761 alleviates ischemia reperfusion injury on kidney of diabetic rats [J]. , 2019, 39(12): 1729-1734. |
[12] | . Mitochondrial fusion-fission and heart failure [J]. Basic & Clinical Medicine, 2018, 38(4): 553-556. |
[13] | Hua YANG; Zhu-jun SHEN. Adipose Tissue-Derived Cells in Ischemic Heart Disease [J]. Basic & Clinical Medicine, 2010, 30(11): 1226-1229. |
[14] | Hong-yan LIU; Jin-guo ZHANG; Hong-yong TAN. Relationship between Plasma adiponectin and Brain natriuretic peptide , tumor necrosis factor-α or insulin resistance in patients with chronic heart failure [J]. Basic & Clinical Medicine, 2010, 30(10): 1098-1099. |
[15] | Lei WANG; Hai-peng WANG; Cai-ming ZHAO; Lian-hua HAN; Cao ZOU; Zhi-hua LIU; Wen-ping JIANG. Comparison in Different Rabbit Models with Diastolic Heart Failure and Systolic Heart Failure [J]. Basic & Clinical Medicine, 2009, 29(12): 1244-1248. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||