[1]Nagy N, Guyer RA, Hotta R, et al. RET overactivation leads to concurrent Hirschsprung disease and intestinal ganglioneuromas[J]. Development, 2020, 147: dev190900. doi:10.1242/dev.190900. [2]Young HM, Hearn CJ, Farlie PG, et al. GDNF is a chemoattractant for enteric neural cells[J].Dev Biol, 2001, 229: 503-516. [3]Widowati T, Melhem S, Patria SY, et al. RET and EDNRB mutation screening in patients with Hirschsprung disease: functional studies and its implications for genetic counseling[J]. Eur J Hum Genet, 2016, 24: 823-829. [4]Butler Tjaden NE, Trainor PA. The developmental etio-logy and pathogenesis of Hirschsprung disease[J]. Transl Res, 2013, 162: 1-15. [5]Okamoto M, Uesaka T, Ito K, et al. Increased RET activity coupled with a reduction in the RET gene dosage causes intestinal aganglionosis in mice[J]. eNeuro, 2021, 8: ENEURO. doi: 10.1523/ENEURO.0534-20.2021. [6]Garcia-Barcelo MM, Tang CS, Ngan ES, et al. Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung's disease[J].Proc Natl Acad Sci U S A, 2009, 106: 2694-2699. [7]Fu M, Barlow-Anacker AJ, Kuruvilla KP, et al. 37/67-laminin receptor facilitates neural crest cell migration during enteric nervous system development[J]. FASEB, 2020, 34: 10931-10947. [8]Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease[J].Am J Physiol Gastrointest Liver Physiol, 2013, 305: G1-G24. doi: 10.1152/ajpgi.00452.2012. [9]Jiang Q, Arnold S, Heanue T, et al. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability[J]. Am J Hum Genet, 2015, 96: 581-596. [10]Gonzales J, Le Berre-Scoul C, Dariel A, et al. Sema-phorin 3A controls enteric neuron connectivity and is inversely associated with synapsin 1 expression in Hirschsprung disease[J]. Sci Rep, 2020, 10: 15119. doi: 10.1038/s41598-020-71865-3. [11]Jiang M, Li C, Cao G, et al. Effects of NRG1 Polymorphisms on Hirschsprung's Disease Susceptibility: A Meta-analysis[J]. Sci Rep, 2017, 7: 9913. doi:10.1038/s41598-017-10477-w. [12]赵炜疆. 神经调节因子Neuregulin-1 (Nrg1)调节U87-MG细胞的黏附分子L1表达及促迁移作用[J]. 基础医学与临床, 2013, 33: 829-833. [13]Le TL, Galmiche L, Levy J, et al. Dysregulation of the NRG1/ERBB pathway causes a developmental disorder with gastrointestinal dysmotility in humans[J]. J Clin Invest, 2021, 131: e145837. doi: 10.1172/JCI145837. [14]Kuhlbrodt K, Herbarth B, Sock E, et al. Sox10, a novel transcriptional modulator in glial cells[J].J Neurosci, 1998, 18: 237-250. [15]Sham MH, Lui VC, Fu M, et al. SOX10 is abnormally expressed in aganglionic bowel of Hirschsprung's disease infants?[J].Gut, 2001, 49: 220-226. [16]Torroglosa A, Villalba-Benito L, Luzón-Toro Β, et al. Epigenetic mechanisms in Hirschsprung disease[J].Int J Mol Sci, 2019, 20: 3123. doi: 10.3390/ijms20133123. [17]Torroglosa A, Enguix-Riego MV, Fernández RM, et al. Involvement of DNMT3B in the pathogenesis of Hirschsprung disease and its possible role as a regulator of neurogenesis in the human enteric nervous system[J]. Genet Med, 2014, 16: 703-710. [18]Hausser J, Zavolan M. Identification and consequences of miRNA-target interactions-beyond repression of gene expression[J]. Nat Rev Genet, 2014, 15: 599-612. [19]Cao J. The functional role of long non-coding RNAs and epigenetics[J]. Biol Proced Online, 2014, 16: 11. doi: 10.1186/1480-9222-16-11. [20]Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495: 384-388. [21]Du C, Shen Z, Zang R, et al. Negative feedback circuitry between MIR143HG and RBM24 in Hirschsprung disease[J]. Biochim Biophys Acta, 2016, 1862: 2127-2136. [22]Gunadi, Budi NYP, Kalim AS, et al. Aberrant expres-sions of miRNA-206 target, FN1, in multifactorial Hirschsprung disease[J]. Orphanet J Rare Dis, 2019, 14: 5. doi: 10.1186/s13023-018-0973-5. [23]Li Y, Zhou L, Lu C, et al. Long non-coding RNA FAL1 functions as a ceRNA to antagonize the effect of miR-637 on the down-regulation of AKT1 in Hirschsprung's disease[J]. Cell Prolif, 2018, 51: e12489. doi: 10.1111/cpr.12489. [24]Soret R, Schneider S, Bernas G, et al. Glial cell-derived neurotrophic factor induces enteric neurogenesis and improves colon structure and function in mouse models of Hirschsprung disease[J]. Gastroenterology, 2020, 159: 1824-1838.e17. |