[1] |
孙凤起, 武韧, 常贵全, 等. 肾小球系膜细胞增殖在糖尿病肾病肾小球硬化中作用的研究进展[J]. 基础医学与临床, 2021, 41: 1510-1513.
|
[2] |
Reutens AT, Jandeleit-Dahm K, Thomas M, et al. A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: Protocol and statistical considerations[J]. Contemp Clin Trials, 2020, 90:105892-105908.
|
[3] |
Giralt-López A, Molina-Van den Bosch M, Vergara A, et al. Revisiting experimental models of diabetic nephropathy[J]. Int J Mol Sci, 2020, 21:3587-3594.
|
[4] |
Hou B, Li Y, Li X, et al. HGF protected against diabetic nephropathy via autophagy-lysosome pathway in podocyte by modulating PI3K/Akt-GSK3β-TFEB axis[J]. Cell Signal, 2020, 75:109744-109752.
|
[5] |
Xu S, He L, Ding K, et al. Tanshinone ⅡA ameliorates streptozotocin-Induced diabetic nephropathy, partly by attenuating PERK pathway-induced fibrosis[J]. Drug Des Devel Ther, 202, 14:5773-5782
|
[6] |
Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone ⅡA in related diseases[J]. Drug Des Devel Ther, 2020, 14:4735-4748.
|
[7] |
肖新怀, 徐米清, 方燕龄. 丹参酮ⅡA通过激活SIRT1/eNOS通路减轻过氧化氢诱导的人脐静脉内皮细胞衰老[J]. 细胞与分子免疫学杂志, 2019, 35:806-811.
|
[8] |
Li W, Sargsyan D, Wu R, et al. DNA methylome and transcriptome alterations in high glucose-induced fiabetic nephropathy cellular model and identification of novel targets for treatment by tanshinone ⅡA[J]. Chem Res Toxicol, 2019, 32:1977-1988.
|
[9] |
郭显, 史承勇, 王文生, 等. 微RNA-21通过激活沉默信息调控因子1信号通路缓解多柔比星心肌毒性[J]. 第二军医大学学报, 2019, 40:51-60.
|
[10] |
Shi W, Huang Y, Zhao X, et al. Histone deacetylase 4 mediates high glucose-induced podocyte apoptosis via upregulation of calcineurin[J]. Biochem Biophys Res Commun, 2020, 533:1061-1068.
|
[11] |
Xie Z, He B, Jiang Z, et la. Tanshinone ⅡA inhibits osteosarcoma growth through modulation of AMPK-Nrf2 signaling pathway[J]. J Recept Signal Transduct Res, 2020 40:591-598.
|
[12] |
Zhuang C, Ni S, Yang ZC, et al. Oxidative stress induces chondrocyte apoptosis through caspase-dependent and caspase-independent mitochondrial pathways and the antioxidant mechanism of angelica sinensis polysaccharide[J]. Oxid Med Cell Longev, 2020, 6:3240820-3240836.
|
[13] |
Wang F, Li R, Tu P, et al. Total glycosides of cistanche deserticola promote neurological function recovery by inducing neurovascular regeneration via Nrf-2/Keap-1 pathway in MCAO/R rats[J]. Front Pharmacol, 2020, 17:236-251.
|
[14] |
Man AWC, Li H, Xia N. The role of sirtuin1 in regulat-ing endothelial function, arterial remodeling and vascular aging[J]. Front Physiol, 2019, 10:1173-1185.
|
[15] |
Lee Y, Im E. Regulation of miRNAs by natural antioxi-dants in cardiovascular diseases: focus on sIRT1 and eNOS[J]. Antioxidants (Basel), 2021, 10:377-382.
|