Basic & Clinical Medicine ›› 2023, Vol. 43 ›› Issue (1): 21-29.doi: 10.16352/j.issn.1001-6325.2023.01.0021
• Invited Reviews: Basic Research and Clinical Translation of Adult Stem Cells • Previous Articles Next Articles
JIANG Yu, QIAN Haiyan*
Received:2022-07-13
Revised:2022-10-10
Online:2023-01-05
Published:2022-12-27
Contact:
*ahqhy712@163.com
CLC Number:
JIANG Yu, QIAN Haiyan. Progress in application of mesenchymal stem cells in treatment of acute myocardial infarction[J]. Basic & Clinical Medicine, 2023, 43(1): 21-29.
| [1] | Rojas-Rios P, Gonzalez-Reyes A. Concise review: The plasticity of stem cell niches: a general property behind tissue homeostasis and repair[J]. Stem Cells, 2014, 32: 852-859. |
| [2] | Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle[J]. Proc Natl Acad Sci U S A, 1999, 96: 14482-14486. |
| [3] | Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell[J]. Cell, 2001, 105: 369-377. |
| [4] | Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126: 663-676. |
| [5] | Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284: 143-147. |
| [6] | Hodgkinson CP, Bareja A, Gomez JA, et al. Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology[J]. Circ Res, 2016, 118: 95-107. |
| [7] | Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans[J]. Science, 2009, 324: 98-102. |
| [8] | Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction[J]. N Engl J Med, 2001, 344: 1750-1757. |
| [9] | Yang YJ, Qian HY, Huang J, et al. Atorvastatin treatment improves survival and effects of implanted mesenchymal stem cells in post-infarct swine hearts[J]. Eur Heart J, 2008, 29: 1578-1590. |
| [10] | Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts[J]. Nature, 2004, 428: 664-668. |
| [11] | Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation[J]. Nat Med, 2004, 10: 494-501. |
| [12] | Wu JM, Hsueh YC, Ch'ang HJ, et al. Circulating cells contribute to cardiomyocyte regeneration after injury[J]. Circ Res, 2015, 116: 633-641. |
| [13] | Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy[J]. Circ Res, 2008, 103: 1204-1219. |
| [14] | Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function[J]. Circulation, 1999, 100: II247-256. |
| [15] | Mathiasen AB, Qayyum AA, Jorgensen E, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial)[J]. Eur Heart J, 2015, 36: 1744-1753. |
| [16] | Heldman AW, DiFede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial[J]. JAMA, 2014, 311: 62-73. |
| [17] | Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (cardiopoietic stem cell therapy in heart failure) multicenter randomized trial with lineage-specified biologics[J]. J Am Coll Cardiol, 2013, 61: 2329-2338. |
| [18] | Perin EC, Borow KM, Silva GV, et al. A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure[J]. Circ Res, 2015, 117: 576-584. |
| [19] | Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction[J]. J Am Coll Cardiol, 2009, 54: 2277-2286. |
| [20] | Pompilio G, Nigro P, Bassetti B, et al. Bone marrow cell therapy for ischemic heart disease: the never ending story[J]. Circ Res, 2015, 117: 490-493. |
| [21] | Teng CJ, Luo J, Chiu RC, et al. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty[J]. J Thorac Cardiovasc Surg, 2006, 132: 628-632. |
| [22] | Zhang H, Chen H, Wang W, et al. Cell survival and redistribution after transplantation into damaged myocardium[J]. J Cell Mol Med, 2010, 14: 1078-1082. |
| [23] | Zhang H, Song P, Tang Y, et al. Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: heart status and cell distribution[J]. J Thorac Cardiovasc Surg, 2007, 134: 1234-1240. |
| [24] | Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells[J]. Nat Biotechnol, 2004, 22: 1282-1289. |
| [25] | Garot J, Unterseeh T, Teiger E, et al. Magnetic reson-ance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium[J]. J Am Coll Cardiol, 2003, 41: 1841-1846. |
| [26] | Dick AJ, Guttman MA, Raman VK, et al. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine[J]. Circulation, 2003, 108: 2899-2904. |
| [27] | Thompson CA, Nasseri BA, Makower J, et al. Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation[J]. J Am Coll Cardiol, 2003, 41: 1964-1971. |
| [28] | Strauer BE, Brehm M, Zeus T, et al. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction[J]. Dtsch Med Wochenschr, 2001, 126: 932-938. |
| [29] | Mayfield AE, Tilokee EL, Latham N, et al. The effect of encapsulation of cardiac stem cells within matrix-enriched hydrogel capsules on cell survival, post-ischemic cell retention and cardiac function[J]. Biomaterials, 2014, 35: 133-142. |
| [30] | Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy[J]. Lancet, 2003, 362: 697-703. |
| [31] | Zhang M, Mal N, Kiedrowski M, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction[J]. FASEB J, 2007, 21: 3197-3207. |
| [32] | Taghavi S, George JC. Homing of stem cells to ischemic myocardium[J]. Am J Transl Res, 2013, 5: 404-411. |
| [33] | Vicario J, Campos C, Piva J, et al. Transcoronary sinus administration of autologous bone marrow in patients with chronic refractory stable angina Phase 1[J]. Cardiovasc Radiat Med, 2004, 5: 71-76. |
| [34] | Halkos ME, Zhao ZQ, Kerendi F, et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction[J]. Basic Res Cardiol, 2008, 103: 525-536. |
| [35] | Hashemi SM, Ghods S, Kolodgie FD, et al. A placebo controlled, dose-ranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction[J]. Eur Heart J, 2008, 29: 251-259. |
| [36] | Lee ST, White AJ, Matsushita S, et al. Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction[J]. J Am Coll Cardiol, 2011, 57: 455-465. |
| [37] | Traverse JH, Henry TD, Pepine CJ, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarc-tion: the TIME randomized trial[J]. JAMA, 2012, 308: 2380-2389. |
| [38] | Traverse JH, Henry TD, Ellis SG, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial[J]. JAMA, 2011, 306: 2110-2119. |
| [39] | Hou JF, Zhang H, Yuan X, et al. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation[J]. Lasers Surg Med, 2008, 40: 726-733. |
| [40] | Mosser DD, Caron AW, Bourget L, et al. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis[J]. Mol Cell Biol, 1997, 17: 5317-5327. |
| [41] | Li N, Zhang Q, Qian H, et al. Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway[J]. Chin Med J (Engl), 2014, 127: 1046-1051. |
| [42] | Chandra M, Surendra K, Kapoor R K, et al. Oxidant stress mechanisms in heart failure[J]. Boll Chim Farm, 2000, 139: 149-152. |
| [43] | Gurusamy N, Ray D, Lekli I, et al. Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardium[J]. J Cell Mol Med, 2010, 14: 2235-2239. |
| [44] | Drowley L, Okada M, Beckman S, et al. Cellular antioxidant levels influence muscle stem cell therapy[J]. Mol Ther, 2010, 18: 1865-1873. |
| [45] | Stanley BA, Sivakumaran V, Shi S, et al. Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria[J]. J Biol Chem, 2011, 286: 33669-33677. |
| [46] | Retuerto MA, Schalch P, Patejunas G, et al. Angiogenic pretreatment improves the efficacy of cellular cardiomyoplasty performed with fetal cardiomyocyte implantation[J]. J Thorac Cardiovasc Surg, 2004, 127: 1041-1049; discussion 1049-1051. |
| [47] | Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy[J]. Nat Rev Cancer, 2008, 8: 592-603. |
| [48] | Yang YJ, Qian HY, Huang J, et al. Combined therapy with simvastatin and bone marrow-derived mesenchymal stem cells increases benefits in infarcted swine hearts[J]. Arterioscler Thromb Vasc Biol, 2009, 29: 2076-2082. |
| [49] | Han XJ, Li H, Liu CB, et al. Guanxin Danshen Formulation improved the effect of mesenchymal stem cells transplantation for the treatment of myocardial infarction probably via enhancing the engraftment[J]. Life Sci, 2019, 233: 116740. |
| [50] | Hu S, Huang M, Nguyen PK, et al. Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation[J]. Circulation, 2011, 124: S27-34. |
| [51] | Ong SG, Lee WH, Huang M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer[J]. Circulation, 2014, 130: S60-69. |
| [52] | Langer R, Tirrell DA. Designing materials for biology and medicine[J]. Nature, 2004, 428: 487-492. |
| [53] | Geckil H, Xu F, Zhang X, et al. Engineering hydrogels as extracellular matrix mimics[J]. Nanomedicine (Lond), 2010, 5: 469-484. |
| [54] | Kutschka I, Chen IY, Kofidis T, et al. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts[J]. Circulation, 2006, 114: I167-173. |
| [55] | Sekine H, Shimizu T, Hobo K, et al. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts[J]. Circulation, 2008, 118: S145-152. |
| [56] | Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2010, 4: 214-222. |
| [57] | Sluijter JP, Verhage V, Deddens J C, et al. Microvesicles and exosomes for intracardiac communication[J]. Cardiovasc Res, 2014, 102: 302-311. |
| [58] | Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells[J]. Int J Mol Sci, 2014, 15: 4142-4157. |
| [59] | Teng X, Chen L, Chen W, et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarc-ted myocardium contributing to angiogenesis and anti-inflammation[J]. Cell Physiol Biochem, 2015, 37: 2415-2424. |
| [60] | Shao L, Zhang Y, Lan B, et al. miRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair[J]. Biomed Res Int, 2017, 2017: 4150705. |
| [61] | Ma T, Chen Y, Chen Y, et al. microRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction[J]. Stem Cells Int, 2018, 2018: 3290372. |
| [62] | Wei Z, Qiao S, Zhao J, et al. miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfu-sion injury[J]. Life Sci, 2019, 232: 116632. |
| [63] | Xu R, Zhang F, Chai R, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization[J]. J Cell Mol Med, 2019, 23: 7617-7631. |
| [64] | Huang P, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19[J]. Cardiovasc Res, 2020, 116: 353-367. |
| [65] | Sun SJ, Wei R, Li F, et al. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair[J]. Stem Cell Reports, 2021, 16: 1662-1673. |
| [1] | DI Tao, SHAO Kai, LIANG Jie, WANG Xiaozhao. Application of tenecteplase combined with tirofiban in interventional treatment for acute myocardial infarction [J]. Basic & Clinical Medicine, 2025, 45(9): 1215-1219. |
| [2] | CHEN Yunhua, LI Di, ZHAO Xiaoyan, CHEN Ming, LI Hongling, ZHAO Chunhua. Knockdown of human-specific lncRNA MEK6-AS1 improves osteogenic differentiation of senescent mesenchymal stem cells [J]. Basic & Clinical Medicine, 2025, 45(5): 568-574. |
| [3] | WU Bo, GUO Hao, ZHONG Zhao, LIU Junfang, WANG Qi, GUO Jibo. Over-expression of miR-101 alleviates ventricular remodelingin rat models with acute myocardial infarction by inhibiting JAK2/STAT3 signaling [J]. Basic & Clinical Medicine, 2025, 45(3): 281-289. |
| [4] | ZHAO Dan, LIU Tingxiang, ZHENG Chuwen, HE Wencong. Exosomes derived from umbilical cord mesenchymal stem cells carryingmiR-296-3p improve symptoms of rat model with gestational diabetes mellitus [J]. Basic & Clinical Medicine, 2025, 45(3): 310-316. |
| [5] | WEN Wen, LIU Chenxi, CHEN Shuangjing, LU Xiaojiong, JIN Zhitao, ZHANG Zheng. Exosomes derived from bone marrow mesenchymal stem cells alleviate hypoxia/reoxygenation-induced cardiomyocyte injury [J]. Basic & Clinical Medicine, 2025, 45(12): 1557-1564. |
| [6] | LIU Zhiqiang, GU Xufang, NI Aixin, FAN Shanshan. Clinical research progress on mesenchymal stem cells in the treatment of chronic limb-threatening ischemia [J]. Basic & Clinical Medicine, 2025, 45(11): 1511-1515. |
| [7] | YU Manshu, ZHAO Xiaomin, QIU Mingyue, LIU Chunran, NA Risu. Advances in the treatment of dental stem cells for Parkinson′s disease [J]. Basic & Clinical Medicine, 2024, 44(9): 1298-1302. |
| [8] | ZHAO Junli, ZHU Junjun, ZHAN Qiunan, LIU Miao. Bone marrow mesenchymal stem cell-derived exosome inhibits high glucose-induced EMT of peritoneal mesothelial cells [J]. Basic & Clinical Medicine, 2024, 44(8): 1149-1156. |
| [9] | GAO Lu, CAI Menghua, XU Yi, HE Wei, CHEN Hui, ZHANG Jianmin. Purification and in vitro functional validation of exosomes from 293T cells with over-expressed membrane-localized IL-3 [J]. Basic & Clinical Medicine, 2024, 44(7): 947-953. |
| [10] | GONG Jintao, LI Jianwei, LI Yuheng, LI Qian, ZHAO Chunhua. Bone marrow-derived mesenchymal stem cells relieve the adverse effects of simulated microgravity on mouse cerebral cortex [J]. Basic & Clinical Medicine, 2024, 44(6): 772-778. |
| [11] | GAO Jingxi, ZHAO Xiaoyan, ZHU Xingyu, SUN Zhao, HAN Qin, ZHAO Chunhua. BM-MSCs delay the senescence of naive CD8+T cells [J]. Basic & Clinical Medicine, 2024, 44(5): 683-689. |
| [12] | LI Na, LI Tao, YANG Dongli, YAO Yuan. Honokiol inhibits the proliferation of human adipose-derived mesenchymal stem cells [J]. Basic & Clinical Medicine, 2024, 44(4): 483-488. |
| [13] | YANG Duojun, LIU Jinghan. Electrocardiogram P-wave sign is related to new-onset atrial fibrillation of patients with acute myocardial infarction [J]. Basic & Clinical Medicine, 2024, 44(11): 1569-1572. |
| [14] | JING Guangxu, WANG Zhangpeng, LIU Zhongyu, LYU Shuang, SUN Hongyu. Hypoxic preconditioning placental mesenchymal stem cells alleviate pathological lesion in mouse models with severe acute pancreatitis [J]. Basic & Clinical Medicine, 2023, 43(9): 1346-1352. |
| [15] | YAN Chenhong, JIN Er. Progress of exosomal PD-L1 in diagnosis and treatment of non-small cell lung cancer [J]. Basic & Clinical Medicine, 2023, 43(9): 1457-1461. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||