[1] |
Cameron N. Can maturity indicators be used to estimate chronological age in children?[J]. Ann Hum Biol, 2015, 42:302-307.
|
[2] |
Huda W, Gkanatsios NA. Radiation dosimetry for extre-mity radiographs[J]. Health Phys, 1998, 75:492-499.
|
[3] |
GBD 2016 Healthcare Access and Quality Collaborators. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016[J]. Lancet, 2018, 391:2236-2271.
|
[4] |
Martin DD, Wit JM, Hochberg Z, et al. The use of bone age in clinical practice-part 1[J]. Horm Res Paediatr, 2011, 76:1-9.
|
[5] |
Berst MJ, Dolan L, Bogdanowicz MM, et al. Effect of knowledge of chronologic age on the variability of pediatric bone age determined using the Greulich and Pyle standards[J]. Am J Roentgenol, 2001, 176:507-510.
|
[6] |
Spampinato C, Palazzo S, Giordano D, et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Med Image Anal, 2017, 36:41-51.
|
[7] |
Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment[J]. J Digit Imaging, 2017, 30:427-441.
|
[8] |
Larson DB, Chen MC, Lungren MP, et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs[J]. Radiology, 2018, 287:313-322.
|
[9] |
Kim JR, Shim WH, Yoon HM, et al. Computerized bone age estimation using deep learning based program: evaluation of the accuracy and efficiency[J]. Am J Roentgenol, 2017, 209:1374-1380.
|
[10] |
Lee BD, Lee MS. Automated bone age assessment using artificial intelligence: the future of bone age assessment[J]. Korean J Radiol, 2021, 22:792-800.
|
[11] |
Halabi SS, Prevedello LM, Kalpathy-Cramer J, et al. The RSNA pediatric bone age machine learning challenge[J]. Radiology, 2019, 290:498-503.
|
[12] |
Tong C, Liang B, Li J, et al. A deep automated skeletal bone age assessment model with heterogeneous features learning[J]. J Med Syst, 2018, 42:249.
|
[13] |
Liu Y, Zhang C, Cheng J, et al. A multi-scale data fusion framework for bone age assessment with convolu-tional neural networks[J]. Comput Biol Med, 2019, 108:161-173.
|
[14] |
Ren X, Li T, Yang X, et al. Regression convolutional neural network for automated pediatric bone age assess-ment from hand radiograph[J]. IEEE J Biomed Health Inform, 2019, 23:2030-2038.
|
[15] |
王嘉庆, 梅礼晔, 张俊华. 基于深度学习的手骨X射线图像骨龄评估[J]. 计算机工程, 2021, 47:291-297.
|
[16] |
管骏. 基于卷积神经网络的骨龄辅助评测技术[J]. 科学技术创新, 2021, 4:53-55.
|
[17] |
文颖, 任旭华, 杨秀军, 等. 基于手腕部影像传统关注特征区域深度学习的人工智能骨龄评估[J]. 中华放射学杂志, 2019, 53:895-899.
|
[18] |
Zhou XL, Wang EG, Lin Q, et al. Diagnostic perfor-mance of convolutional neural network-based Tanner-Whitehouse 3 bone age assessment system[J]. Quant Imaging Med Surg, 2020, 10:657-667.
|
[19] |
Wang F, Gu X, Chen S, et al. Artificial intelligence system can achieve comparable results to experts for bone age assessment of Chinese children with abnormal growth and development[J]. PeerJ, 2020, 8:e8854. doi: 10.7717/peerj.8854.
|
[20] |
Wang F, Cidan W, Gu X, et al. Performance of an artificial intelligence system for bone age assessment in Tibet[J]. Br J Radiol, 2021, 94:20201119. doi: 10.1259/bjr.20201119.
|
[21] |
赵凯, 马帅, 孙佳丽, 等. 人工智能软件对住院医师X线骨龄诊断辅助效果初探[J]. 实用放射学杂志, 2021, 37:317-320.
|
[22] |
宋娟, 宫平, 高畅, 等. 基于深度学习的儿童骨龄智能评估模型构建及初步临床验证[J]. 中华放射学杂志, 2019, 53:974-978.
|
[23] |
李睿, 张世杰, 黄奥云, 等. 基于深度学习的青少年手腕骨骨龄评价[J]. 计算机技术与发展, 2020, 30:124-134.
|
[24] |
王岩, 霍爱华, 王大为, 等. 基于深度学习人工智能骨龄评测系统临床应用[J]. 中国医学影像技术, 2021, 37:104-107.
|
[25] |
Cavallo F, Mohn A, Chiarelli F, et al. Evaluation of bone age in children: a mini-review[J]. Front Pediatr, 2021, 9:580314. doi: 10.3389/fped.2021.580314.
|
[26] |
van Leeuwen KG, Schalekamp S, Rutten M, et al. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence[J]. Eur Radiol, 2021, 31:3797-3804.
|
[27] |
刘士远. 中国医学影像人工智能发展报告 [M]. 北京: 科学出版社, 2020:118-128.
|
[28] |
宋绮蕊, 蔡军. 人工智能及机器学习在心血管疾病中的应用[J]. 基础医学与临床, 2020, 40: 707-710.
|
[29] |
Omoumi P, Ducarouge A, Tournier A, et al. To buy or not to buy-evaluating commercial AI solutions in radiology (the ECLAIR guidelines)[J]. Eur Radiol, 2021, 31:3786-3796.
|