[1] Wilhelm I, Fazakas C, Krizbai IA. In vitro models of the blood-brain barrier[J]. Acta Neurobiol Exp (Wars), 2011,71:113-128. [2] Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier[J]. Neurobiol Dis, 2010, 37:13-25. [3] Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery[J]. J Inherit Metab Dis, 2013, 36: 437-449. [4] Rahman NA, Rasil ANHM, Meyding Lamade U, et al. Immortalized endothelial cell lines for in vitro blood-brain barrier models: a systematic review[J]. Brain Res, 2016, 1642:532-545. [5] Van der Helm MW, van der Meer AD, Eijkel JC, et al. Microfluidic organ-on-chip technology for blood-brain barrier research[J]. Tissue Barriers, 2016, 4: e1142493. doi: 10.1080/21688370. [6] Andreone BJ, Lacoste B, Gu C. Neuronal and vascular interactions[J]. Annu Rev Neurosci, 2015, 38:25-46. [7] Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier[J]. Nat Med, 2013, 19:1584-1596. [8] Qosa H, LeVine H 3rd, Keller JN, et al. Mixed oligomers and monomeric amyloid-β disrupts endothelial cells integrity and reduces monomeric amyloid-β transport across hCMEC/D3 cell line as an in vitro blood-brain barrier model[J]. Biochim Biophys Acta, 2014, 1842:1806-1815. [9] Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier[J]. Nature, 2010, 468:557-561. [10] Workman MJ, Svendsen CN. Recent advances in human iPSC-derived models of the blood-brain barrier[J]. Fluids Barriers CNS, 2020, 17:30. doi: 10.1186/s12987-020-00191-7. |