[1]杨卉,莫显刚,王兰,等.ApoE-/-小鼠动脉粥样硬化斑块中NHE1与Netrin-1表达上调[J].基础医学与临床,2020, 40: 777-783. [2] Huang D, Swanson EA, Lin CP, et al. Optical coher-ence tomography[J]. Science, 1991, 254: 1178-1181. [3]Tearney GJ, Brezinski ME, Bouma BE, et al. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 1997, 276: 2037-2039. [4]Fujimoto JG, Schmitt JM, Swanson EA, et al. The development of OCT[M]//Ik-Kyung Jang. Cardiovascular OCT imaging. Entlebuch(Switzerland):Springer, 2015:1-22 [5]Qin N, Liu Y, Huang L, et al. Research on optical properties of cardiovascular tissues based on OCT data[J]. JInnov Opt Health Sci, 2021, 14:2140007-1-11.doi:10.1142/s17935458214000071. [6]Schimitt JM, Knuttel A, Bonner RF. Measurement of optical properties of biological tissues by low-coherence reflectometry[J]. Appl Opt, 1993, 32: 6032-6042. [7]van Soest G,Goderie T, Regar E, et al.Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging[J]. J Biomed Opt, 2010, 15: 011105.doi: 10.1117/1.3280271. [8]Swaan A, Muller BG, Wilk LS, et al. One-to-one registration of en-face optical coherence tomography attenuation coefficients with histology of a prostatectomy specimen[J]. J Biophotonics, 2019, 12:e201800274. doi: 10.1002/jbio.201800274. [9]Vermeer KA, Mo J, Weda J, et al. Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography[J]. Biomed Opt Express, 2013, 5: 322-337. [10] Smith G, Dwork N, O'Connor D, et al. Automateddepth-resolved estimation of the attenuation coefficient from optical coherence tomography data[J]. IEEE Trans Med Imaging, 2015, 34: 2592-2602. [11]Levitz D, Thrane L, Frosz M, et al. Determination of optical scattering properties of highly-scattering media in optical coherence tomography images[J]. Opt Express, 2004, 12: 249-259. [12]Wang LV, Wu HI. Optical coherence tomography[M]//Wang LV, Wu HI. Biomedical optics: principles and imaging. Hoboken: John Wiley & Sons, Inc., 2007: 181-218. [13]李鹏, 高万荣. 光学相干层析术提取色散信息的初步研究[J].光子学报, 2009, 38: 2598-2602. [14]Wojtkowski M, Srinivasan VJ, Ko TH, et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Opt Express, 2004, 12: 2404-2422. [15]黄炳杰, 步鹏, 王向朝,等. 用于频域光学相干层析成像的深度分辨色散补偿方法[J]. 光学学报, 2012, 32:6-12. [16]Liu D, Xin Y, Li Q, et al. Dispersion correction for optical coherence tomography by the stepped detection algorithm in the fractional Fourier domain[J]. Opt Express, 2020, 28: 5919-5935. [17]Photiou C, Bousi E, Zouvani I, et al. Using speckle to measure tissue dispersion in optical coherence tomography[J]. Biomed Opt Express, 2017, 8: 2528-2535. [18]Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography[J]. Circulation, 2002, 106: 1640-1645. [19]Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial plaque by optical coherence tomography[J]. Am J Cardiol, 2006, 97: 1172-1175. [20]Fujii K, Kawakami R, Hirota S. Histopathological validation of optical coherence tomography findings of the coronary arteries[J]. J Cardiol, 2018, 72: 179-185. [21]Fujii K, Kubo T, Otake H, et al. Expert consensus statement for quantitative measurement and morphological assessment of optical coherence tomography[J]. Cardiovasc Interv Ther, 2020, 35: 13-18. [22]Ughi GJ, Adriaenssens T, Sinnaeve P, et al. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images[J]. Biomed Opt Express, 2013, 4: 1014-1030. [23]Rico-Jimenez JJ, Campos-Delgado DU, Villiger M, et al. Automatic classification of atherosclerotic plaques imaged with intravascular OCT[J]. Biomed Opt Express, 2016, 7: 4069-4085. [24]Gessert N, Lutz M, Heyder M, et al. Automatic plaque detection in IVOCT pullbacks using convolutional neural networks[J]. IEEE Trans Med Imaging, 2018, 38: 426-434. [25]Gharaibeh Y, Prabhu DS, Kolluru C, et al. Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring[J]. J Med Imaging, 2019, 6: 045002.doi: 10.1117/1.JMI.6.4.045002 [26]Liu X, Du J, Yang J, et al. Coronary artery fibrous plaque detection based on multi-scale convolutional neural networks[J]. J Signal Process Syst, 2020, 92: 325-333. [27]Guo X, Tang D, Molony D, et al. A machine learning-based method for intracoronary OCT segmentation and vulnerable coronary plaque cap thickness quantification[J]. Int J Comput Methods, 2019, 16: 1842008.doi: 10.1142/S0219876218420082. [28]Liu R, Zhang Y, Zheng Y, et al. Automated detection of vulnerable plaque for intravascular optical coherence tomography images[J]. Cardiovasc Eng Technol, 2019, 10: 590-603. [29]Wang J. OCT image recognition of cardiovascular vulnerable plaque based on CNN[J]. IEEE Access, 2020, 8: 140767-140776. [30]Shi P, Xin J, Liu S, et al. Vulnerable plaque recognition based on attention model with deep convolutional neural network[C]. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018: 834-837. doi: 10.1109/EMBC.2018.8512279. |