Basic & Clinical Medicine ›› 2022, Vol. 42 ›› Issue (1): 2-14.doi: 10.16352/j.issn.1001-6325.2022.01.007
• Invited Reviews:Nanotechnology, Drug Delivery and Regeneration Medicine • Previous Articles Next Articles
CAO Yi, JIANG Chen*
Received:
2021-11-02
Revised:
2021-12-01
Online:
2022-01-05
Published:
2022-01-05
Contact:
* jiangchen@shmu.edu.cn
CLC Number:
CAO Yi, JIANG Chen. Brain-targeted nanoparticle drug delivery systems: research advances[J]. Basic & Clinical Medicine, 2022, 42(1): 2-14.
[1]Kreuter J. Nanoparticulate systems for brain delivery of drugs[J]. Adv Drug Deliv Rev, 2001, 47: 65-81. [2]Loureiro JA, Gomes B, Fricker G, et al. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment[J]. Colloids Surf B: Biointerfaces, 2016, 145: 8-13. [3]Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles[J]. J Control Release, 2012, 161:264-273. [4]Peluffo H, Unzueta U, Negro-Demontel ML, et al. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS[J]. Biotechnol Adv, 2015, 33: 277-287. [5]Koffie RM, Farrar CT, Saidi LJ, et al. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging[J]. Proc Natl Acad Sci, 2011, 108: 18837-18842. [6]Mahajan DS, Roy I, Xu G, et al. Enhancing the delivery of anti retroviral drug “Saquinavir” across the blood brain barrier using nanoparticles[J]. Curr HIV Res, 2010, 8:396-404. [7]Nance E, Timbie K, Miller GW, et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood-brain barrier using MRI-guided focused ultrasound[J]. J Control Release, 2014, 189:123-132. [8]Zhang TT, Li W, Meng G, et al. Strategies for transport-ing nanoparticles across the blood-brain barrier[J]. Biomater Sci, 2016, 4:219-229. [9]Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases[J]. ACS Nano, 2014, 8:1958-1965. [10]Barbu E, Molnàr É, Tsibouklis J, et al. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier[J]. Expert Opin Drug Deliv, 2009, 6:553-565. [11]Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier[J]. Adv Drug Deliv Rev, 2012, 64:640-665. [12]Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases[J]. J Control Release, 2016, 235:34-47. [13]Shen Y, Cao B, Snyder NR, et al. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier[J]. J Nanobiotechnol, 2018, 16:1-17. [14]Zhou J, Patel TR, Sirianni RW, et al. Highly penetra-tive, drug-loaded nanocarriers improve treatment of glioblastoma[J]. Proc Natl Acad Sci, 2013, 110:11751-11756. [15]Bhowmik A, Chakravarti S, Ghosh A, et al. Anti-SSTR2 peptide based targeted delivery of potent PLGA encapsulated 3, 3'-diindolylmethane nanoparticles through blood brain barrier prevents glioma progression[J]. Oncotarget, 2017, 8:65339. [16]Hu Q, Gao X, Gu G, et al. Glioma therapy using tumor homing and penetrating peptide-functionalized PEG-PLA nanoparticles loaded with paclitaxel[J]. Biomaterials, 2013, 34:5640-5650. [17]Nance EA, Woodworth GF, Sailor KA, et al. A dense poly (ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue[J]. Sci Transl Med, 2012, 4:149ra119. doi: 10.1126/scitranslmed.3003594. [18]Gao X, Yue Q, Liu Z, et al. Guiding brain-tumor surgery via blood-brain-barrier-permeable gold nanoprobes with acid-triggered MRI/SERRS signals[J]. Adv Mater, 2017, 29:1603917. [19]Liu M, Fréchet JM. Designing dendrimers for drug delivery[J]. Pharm Sci Technol Today, 1999, 2:393-401. [20]Zhang F, Magruder JT, Lin YA, et al. Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model[J]. J Control Release, 2017, 249:173-182. [21]Lu Q, Cai X, Zhang X, et al. Synthetic polymer nanoparticles functionalized with different ligands for receptor-mediated transcytosis across the blood-brain barrier[J]. ACS Appl Bio Mater, 2018, 1:1687-1694. [22]Chen Z, Zhao P, Luo Z, et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy[J]. ACS Nano, 2016, 10:10049-10057. [23]Kaur S, Manhas P, Swami A, et al. Bioengineered PLGA-chitosan nanoparticles for brain targeted intranasal delivery of antiepileptic TRH analogues[J]. Chem Eng J, 2018, 346:630-639. [24]Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nat Biotechnol, 2015, 33:941-951. [25]Cox A, Andreozzi P, Dal Magro R, et al. Evolution of nanoparticle protein corona across the blood-brain barrier[J]. ACS Nano, 2018, 12:7292-7300. [26]Velasco-Aguirre C, Morales F, Gallardo-Toledo E, et al. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches[J]. Int J Nanomedicine, 2015, 10:4919-4936. [27]Jahanshahi M, Babaei Z. Protein nanoparticle: a unique system as drug delivery vehicles[J]. Afr J Biotechnol, 2008, 7:4926-4934. [28]Huang J, Yuan Y, Shao Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications[J]. Nat Rev Mater, 2017, 2:1-19. [29]Anand P, O'Neil A, Lin E, et al. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers[J]. Sci Rep, 2015, 5:1-10. [30]Fan K, Jia X, Zhou M, et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma[J]. ACS Nano, 2018, 12:4105-4115. [31]Yan C, Hu X, Guan P, et al. Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging[J]. J Mater Sci, 2020, 55:1198-1215. [32]He X, Nie H, Wang K, et al. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles[J]. Anal Chem, 2008, 80:9597-9603. [33]Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer[J]. Nanomaterials, 2017, 7:189.doi:10.3390/nano7070189. [34]Song Y, Du D, Li L, et al. In vitro study of receptor-mediated silica nanoparticles delivery across blood-brain barrier[J]. ACS Appl Mater Interfaces, 2017, 9:20410-20416. [35]Song Y, Cai X, Du D, et al. Comparison of blood-brain barrier models for in vitro biological analysis: one-cell type vs three-cell typ[J]. ACS Appl Bio Mater, 2019, 2:1050-1055. [36]Ding S, Li Z, Cheng Y, et al. Enhancing adsorption capacity while maintaining specific recognition performance of mesoporous silica: a novel imprinting strategy with amphiphilic ionic liquid as surfactant[J]. Nanotechnology, 2018, 29:375604. doi: 10.1088/1361-6528/aace10. [37]Kuang J, Song W, Yin J, et al. iRGD modified chemo-immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma[J]. Adv Funct Mater, 2018, 28:1800025. [38]Yin T, Xie W, Sun J, et al. Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and NIR photothermal treatment of Alzheimer's disease using ultralow irradiance[J]. ACS Appl Mater Interfaces, 2016, 8:19291-19302. [39]Sung JH, Ji JH, Park JD, et al. Subchronic inhalation toxicity of silver nanoparticles[J]. Toxicol Sci, 2009, 108:452-461. [40]Monsalve Y, Tosi G, Ruozi B, et al. PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting[J]. Nanomedicine, 2015, 10:1735-1750. [41]Muniswamy VJ, Raval N, Gondaliya P, et al. ‘Dendrimer-Cationized-Albumin'encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin[J]. Int J Pharm, 2019, 555:77-99. [42]Agarwal A, Majumder S, Agrawal H, et al. Cationized albumin conjugated solid lipid nanoparticles as vectors for brain delivery of an anti-cancer drug[J]. Curr Nanosci, 2011, 7:71-80. [43]Park TE, Singh B, Li H, et al. Enhanced BBB permeability of osmotically active poly (mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer's disease[J]. Biomaterials, 2015, 38:61-71. [44]Kamalinia G, Khodagholi F, Shaerzadeh F, et al. Catio-nic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration[J]. Chem Biol Drug Des, 2015, 86:1203-1214. [45]Kim JY, Choi WI, Kim YH, et al. Brain-targeted delivery of protein using chitosan-and RVG peptide-conjugated, pluronic-based nano-carrier[J]. Biomaterials, 2013, 34:1170-1178. [46]Dombu CY, Kroubi M, Zibouche R, et al. Characteriza-tion of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells[J]. Nanotechnology, 2010, 21:355102. [47]Kamalinia G, Khodagholi F, Shaerzadeh F, et al. Catio-nic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration[J]. Chem Biol Drug Des, 2015, 86:1203-1214. [48]Lu W, Wan J, Zhang Q, et al. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats[J]. Int J Cancer, 2007, 120:420-431. [49]Agarwal A, Agrawal H, Tiwari S, et al. Cationic ligand appended nanoconstructs: a prospective strategy for brain targeting[J]. Int J Pharm, 2011, 421:189-201. [50]Abhinav A, Saikat M, Himanshu A, et al. Cationized albumin conjugated solid lipid nanoparticles as vectors for brain delivery of an anti-cancer drug[J]. Curr Nanosci, 2011, 7:71-80. [51]Janaszewska A, Ziemba B, Ciepluch K, et al. The biodistribution of maltotriose modified poly(propylene imine) (PPI) dendrimers conjugated with fluorescein—proofs of crossing blood-brain-barrier[J]. New J Chem, 2012, 36:350-353. [52]Park TE, Singh B, Li H, et al. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer's disease[J]. Biomaterials, 2015, 38:61-71. [53]Monsalve Y, Tosi G, Ruozi B, et al. PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting[J]. Nanomedicine (Lond), 2015, 10:1735-1750. [54]Kim JY, Choi WI, Kim YH, et al. Brain-targeted delivery of protein using chitosan-and RVG peptide-conjugated, pluronic-based nano-carrier[J]. Biomaterials, 2013, 34:1170-1178. [55]Kamalinia G, Khodagholi F, Shaerzadeh F, et al. Catio-nic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration[J]. Chem Biol Drug Des, 2015, 86:1203-1214. [56]Jiang X, Xin H, Ren Q, et al. Nanoparticles of 2-deoxy-D-glucose functionalized poly (ethylene glycol)-co-poly (trimethylene carbonate) for dual-targeted drug delivery in glioma treatment[J]. Biomaterials, 2014, 35:518-529. [57]Du D, Chang N, Sun S, et al. The role of glucose transporters in the distribution of p-aminophenyl-α-d-mannopyranoside modified liposomes within mice brain[J]. J Control Release, 2014, 182:99-110. [58]Hao ZF, Cui YX, Li MH, et al. Liposomes modified with P-aminophenyl-α-d-mannopyranoside: a carrier for target-ing cerebral functional regions in mice[J]. Eur J Pharm Biopharm, 2013, 84:505-516. [59]Singh I, Swami R, Jeengar MK, et al. p-Aminophenyl-α-D-mannopyranoside engineered lipidic nanoparticles for effective delivery of docetaxel to brain[J]. Chem Phys Lipids, 2015, 188:1-9. [60]Zhang CX, Zhao WY, Liu L, et al. A nanostructure of functional targeting epirubicin liposomes dually modified with aminophenyl glucose and cyclic pentapeptide used for brain glioblastoma treatment[J]. Oncotarget, 2015, 6:32681. [61]Lei F, Fan W, Li XK, et al. Design, synthesis and preliminary bio-evaluation of glucose-cholesterol derivatives as ligands for brain targeting liposomes[J]. Chin Chem Lett, 2011, 22:831-834. [62]Qin Y, Fan W, Chen H, et al. In vitro and in vivo investigation of glucose-mediated brain-targeting liposomes[J]. J Drug Target, 2010, 18:536-549. [63]Xie F, Yao N, Qin Y, et al. Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting[J]. Int J Nanomedicine, 2012, 7:163-175. [64]Liu J, He Y, Zhang J, et al. Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery[J]. Biomaterials, 2016, 74:64-76. [65]Vyas A, Jain A, Hurkat P, et al. Targeting of AIDS related encephalopathy using phenylalanine anchored lipidic nanocarrier[J]. Colloids Surf B: Biointerfaces, 2015, 131:155-161. [66]Geldenhuys W, Mbimba T, Bui T, et al. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparti-cles for brain cancers[J]. J Drug Target, 2011, 19:837-845. [67]Geldenhuys W, Wehrung D, Groshev A, et al. Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers[J]. Pharm Dev Technol, 2015, 20:497-506. [68]Grover A, Hirani A, Pathak Y, et al. Brain-targeted delivery of docetaxel by glutathione-coated nanoparticles for brain cancer[J]. AAPS PharmSciTech, 2014, 15:1562-1568. [69]Venishetty VK, Samala R, Komuravelli R, et al. β-Hydroxybutyric acid grafted solid lipid nanoparticles: A novel strategy to improve drug delivery to brain[J]. Nanomedicine, 2013, 9:388-397. [70]Devi R, Jain A, Hurkat P, et al. Dual drug delivery using lactic acid conjugated SLN for effective management of neurocysticercosis[J]. Pharm Res, 2015, 32:3137-3148. [71]LaManna JC, Harik SI. Regional comparisons of brain glucose influx[J]. Brain Res, 1985, 326:299-305. [72]Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia[J]. Glia, 1997, 21:2-21. [73]Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB)[J]. Eur J Pharm Biopharm, 2009, 71:251-256. [74]Visser CC, Stevanovi S, Voorwinden LH, et al. Targeting liposomes with protein drugs to the blood-brain barrier in vitro[J]. Eur J Pharm Sci, 2005, 25:299-305. [75]Chang J, Jallouli Y, Kroubi M, et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier[J]. Int J Pharm, 2009, 379:285-292. [76]Fornaguera C, Dols-Perez A, Calderó G, et al. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier[J]. J Control Release, 2015, 211:134-143. [77]Qiao R, Jia Q, Hüwel S, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier[J]. ACS Nano, 2012, 6:3304-3310. [78]Re F, Cambianica I, Zona C, et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model[J]. Nanomedicine, 2011, 7:551-559. [79]You Y, Yang L, He L, et al. Tailored mesoporous silica nanosystem with enhanced permeability of the blood-brain barrier to antagonize glioblastoma[J]. J Mater Chem B, 2016, 4:5980-5990. [80]Boado RJ, Zhang Y, Zhang Y, et al. GDNF fusion protein for targeted-drug delivery across the human blood-brain barrier[J]. Biotechnol Bioeng, 2008, 100:387-396. [81]Ulbrich K, Knobloch T, Kreuter J. Targeting the insulin receptor: nanoparticles for drug delivery across the blood-brain barrier (BBB)[J]. J Drug Target, 2011, 19:125-132. [82]Gan CW, Feng SS. Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier[J]. Biomaterials, 2010, 31:7748-7757. [83]Lin T, Zhao P, Jiang Y, et al. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy[J]. ACS Nano, 2016, 10:9999-10012. [84]Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery[J]. Med Res Rev, 2002, 22:225-250. [85]Simpson IA, Ponnuru P, Klinger ME, et al. A novel model for brain iron uptake: introducing the concept of regulation[J]. J Cereb Blood Flow Metab, 2015, 35:48-57. [86]Zhang Y, Lu C, Zhang J. Lactoferrin and its detection methods: a review[J]. Nutrients, 2021, 13:2492. doi: 10.3390/nu13082492. [87]Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier insulin receptor[J]. J Neurochem, 1985, 44:1771-1778. [88]Zou H, Wang Z, Feng M. Nanocarriers with tunable surface properties to unblock bottlenecks in systemic drug and gene delivery[J]. J Control Release, 2015, 214:121-133. [89]Shi B, Du X, Chen J, et al. Multifunctional hybrid nanoparticles for traceable drug delivery and intracellular microenvironment-controlled multistage drug-release in neurons[J]. Small, 2017, 13:1603966. [90]Cao Y, Wang B, Wang Y, et al. Dual drug release from core-shell nanoparticles with distinct release profiles[J]. J Pharm Sci, 2014, 103:3205-3216. [91]Angelova A, Angelov B, Drechsler M, et al. Neurotro-phin delivery using nanotechnology[J]. Drug Discov Today, 2013, 18:1263-1271. [92]Lages EB, Fernandes RS, Silva JO, et al. Co-delivery of doxorubicin, docosahexaenoic acid, and alpha-tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance antitumor activity and reduce toxicity[J]. Biomed Pharmacother, 2020, 132:110876. [93]Maor I, Asadi S, Korganbayev S, et al. Laser-induced thermal response and controlled release of copper oxide nanoparticles from multifunctional polymeric nanocarriers[J]. Sci Technol Adv Mater, 2021, 22:218-233. [94]Lopez-Salas FE, Nadella R, Maldonado-Berny M, et al. Synthetic Monopartite peptide that enables the nuclear import of genes delivered by the neurotensin-polyplex vector[J]. Mol Pharm, 2020, 17:4572-4588. [95]Kass LE, Nguyen J. Nanocarrier-hydrogel composite delivery systems for precision drug release[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2021:e1756. doi: 10.1002/wnan.1756. |
[1] | HUANG Qingyu, CHEN Qiying, SUN Shengjia, WU Bangwei, LIN Shan, Alimujiang·MAIMAITIJIANG. Preparation of Lir@BSA-PMF nanoparticles and verification of their cell functions [J]. Basic & Clinical Medicine, 2024, 44(2): 235-241. |
[2] | ZHANG Min, XING Dan-dan, KANG Wen-yue, LIN Hui. Sevoflurane alleviates early brain injury in rats with subarachnoid hemorrhage [J]. Basic & Clinical Medicine, 2022, 42(8): 1206-1212. |
[3] | SU Yu-wen, XIU Jian-bo, XU Qi. Establishment and comparison of in vitro blood-brain barrier cell models [J]. Basic & Clinical Medicine, 2022, 42(5): 714-720. |
[4] | FANG Tao, YANG Wan-xi, LI Xin, CONG Zhi-cheng, ZHANG Pei-zong, QI Quan, SONG Bing. Poly (lactic-co-glycolic acid)-poly (ethylene glycol) scaffold incorporating angiopoietin 1 loaded nanoparticles promotes cardiac repair after myocardial infarction in rats [J]. Basic & Clinical Medicine, 2021, 41(8): 1114-1120. |
[5] | Li-wen GUO; Sen-ming WANG; Xi-gang HU; Man-ming CAO; Ji-ren ZHANG. Study for preparation and anticancer activity of the stealth epirubicin chitosan nanoparticles [J]. Basic & Clinical Medicine, 2009, 29(9): 979-983. |
[6] | Qing-feng ZHENG; Jian-jun WANG; Min-gang YING; Shuo-yan LIU; Ying-chao HAN. Transfection of A549 human lung cancer cells can be mediated by nano-hydroxyapatite [J]. Basic & Clinical Medicine, 2009, 29(3): 309-313. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备07012236号
Website Copyright © Basic & Clinical Medicine