[1]Wardlaw JM, Benveniste H, Nedergaard M, et al. Perivascular spaces in the brain: anatomy, physiology and pathology[J]. Nat Rev Neurol, 2020, 16: 137-153. [2]Bedussi B, Almasian M, Vos JD, et al. Paravascular spaces at the brain surface: low resistance pathways for cerebrospinal fluid flow[J]. J Cereb Blood Flow Metab, 2018, 38: 719-726. [3]Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, β(Amyloid β)[J]. Sci Transl Med, 2012, 4: 1-11. [4]Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension[J]. Nat Commun, 2018, 9: 4878. doi:10.1038/s41467-018-07318-3. [5]Iliff JJ, Wang M, Zeppenfeld DM, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain[J]. J Neurosci, 2013, 33: 18190-18199. [6]Smith A , Yao X, Dix JA, et al.Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma[J]. Elife, 2017, 6:1-16. [7]Morris AWJ, Sharp MMG, Albargothy NJ, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain[J]. Acta Neuropathol, 2016, 131: 725-736. [8]Hawkes CA, Härtig W, Kacza J, et al. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy[J]. Acta Neuropathol, 2011, 121: 431-443. [9]Carare RO, Bernardes-Silva M, Newman TA, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology[J]. Neuropathol Appl Neurobiol, 2008, 34: 131-144. [10]Albargothy NJ, Johnston DA, MacGregor-Sharp M, et al. Convective influx/glymphatic system: Tracers injected into the CSF enter and leave the brain along separate periar-terial basement membrane pathways[J]. Acta Neuropathol, 2018, 136: 139-152. [11]Diem AK, Tan M, Bressloff NW, et al. A simulation model of periarterial clearance of amyloid-β from the brain[J]. Front Aging Neurosci, 2016, 8: 1-11. [12]Diem AK, Sharp MMG, Gatherer M, et al. Arterial pulsations cannot drive intramural periarterial drainage: significance for Aβ drainage[J]. Front Neurosci, 2017, 11: 1-9. [13]Faghih MM, Sharp MK. Is bulk flow plausible in perivascular, paravascular and paravenous channels?[J]. Fluids Barriers CNS, 2018, 15: 1-10. [14]Li H, Chen M, Yang J, et al. Fluid flow along venous adventitia in rabbits: Is it a potential drainage system complementary to vascular circulations?[J]. PLoS One, 2012, 7: e41395. doi:10.1371/journal.pone.0041395. [15]Li H, Tong J, Cao W, et al. Longitudinal non-vascular transport pathways originating from acupuncture points in extremities visualised in human body[J]. Chinese Sci Bull, 2014, 59: 5090-5095. [16]Feng J, Wang F, Han X, et al. A “green pathway” different from simple diffusion in soft matter: fast molecular transport within micro/nanoscale multiphase porous sys-tems[J]. Nano Res, 2014, 7: 434-442. [17]Li H, Yang C, Lu K, et al. A long-distance fluid trans-port pathway within fibrous connective tissues in patients with ankle edema[J]. Clin Hemorheol Microcirc, 2016, 63: 411-421. [18]Li H, Yang C, Yin Y, et al. An extravascular fluid transport system based on structural framework of fibrous connective tissues in human body[J]. Cell Prolif, 2019, 52: 1-14. |