[1] Zajączkowska R, Kocot-Kępska M, Leppert W, et al. Bone pain in cancer patients: mechanisms and current treatment[J]. Int J Mol Sci, 2019, 20: 6047-6066. [2] Wang L, Huo M, Chen Y, et al. Tumor microenviron-ment-enabled nanotherapy[J]. Adv Healthc Mater, 2018, 7: e1701156-e1701178. [3] 曹峰琦, 陈翀, 刘妍, 等. 肿瘤pH微环境通过激活β-catenin/TCF4增强人乳腺癌肿瘤细胞的干性[J]. 基础医学与临床, 2014, 034: 622-627. [4] Li Z, Yu C, Chen Y, et al. A novel water-soluble fluorescent probe with ultra-sensitivity over a wider pH range and its application for differentiating cancer cells from normal cells[J]. Analyst, 2019, 144: 6975-6980. [5] Zhu S, Zhu J, Zhen G, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain[J]. J Clin Invest, 2019, 129: 1076-1093. [6] Li M, Zhu M, Xu Q, et al. Sensation of TRPV1 via 5-hydroxytryptamine signaling modulates pain hypersensitivity in a 6-hydroxydopamine induced mice model of Parkinson's disease[J]. Biochem Biophys Res Commun, 2020, 521: 868-873. [7] Zhang S, Zhao J, Meng Q. AAV-mediated siRNA against TRPV1 reduces nociception in a rat model of bone cancer pain[J]. Neurol Res, 2019, 41: 972-979. [8] Lee H, Ahn S, Ann J, et al. Discovery of dual-acting opioid ligand and TRPV1 antagonists as novel therapeutic agents for pain[J]. Eur J Med Chem, 2019, 182: 111634-111634. [9] Yoneda T, Hiasa M, Nagata Y, et al. Contribution of acidic extracellular microenvironment of cancer-colonized bone to bone pain[J]. Biochim Biophys Acta, 2015, 1848: 2677-2684. [10] Brusco I, Li Puma S, Chiepe KB, et al. Dacarbazine alone or associated with melanoma-bearing cancer pain model induces painful hypersensitivity by TRPA1 activa-tion in mice[J]. Int J Cancer, 2020, 146: 2797-2809. [11] Denadai-Souza A, Martin L, de Paula MA, et al. Role of transient receptor potential vanilloid 4 in rat joint inflammation[J]. Arthritis Rheum, 2012, 64: 1848-1858. [12] Heo MH, Kim JY, Hwang I, et al. Analgesic effect of quetiapine in a mouse model of cancer-induced bone pain[J]. Korean J Intern Med, 2017, 32: 1069-1074. [13] Zhu H, Ding J, Wu J, et al. Resveratrol attenuates bone cancer pain through regulating the expression levels of ASIC3 and activating cell autophagy[J]. Acta Biochim Biophys Sin (Shanghai), 2017, 49: 1008-1014. [14] Remeniuk B, King T, Sukhtankar D, et al. Disease modifying actions of interleukin-6 blockade in a rat model of bone cancer pain[J]. Pain, 2018, 159: 684-698. [15] Zhou YQ, Liu Z, Liu ZH, et al. Interleukin-6: an emerging regulator of pathological pain[J]. J Neuroinflammation, 2016, 13: 141-149. [16] Chen JJ, Dai L, Zhao LX, et al. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis[J]. Sci Rep, 2015, 5: 10278-10289. [17] Leo M, Schulte M, Schmitt LI, et al. Intrathecal resiniferatoxin modulates TRPV1 in DRG neurons and reduces TNF-induced pain-related behavior[J]. Mediators Inflamm, 2017, 2017: 2786427-2786434. [18] Mazaki A, Orita S, Inage K, et al. Tumor necrosis factor-α produced by osteoclasts might induce intractable pain in a rat spinal metastasis model of breast cancer[J]. Spine Surg Relat Res, 2019, 3: 261-266. [19] Mao Y, Wang C, Tian X, et al. Endoplasmic reticulum stress contributes to nociception via neuroinflammation in a murine bone cancer pain model[J]. Anesthesiology, 2020, 132: 357-372. [20] Chen J, Cong X, Zhan X, et al. Effects of parecoxib on pain threshold and inflammatory factors IL-1β, IL-6 and TNF-α in spinal cord of rats with bone cancer pain[J]. J Coll Physicians Surg Pak, 2019, 29: 528-531. [21] Kobayashi K, Omori K, Murata T. Role of prostaglandins in tumor microenvironment[J]. Cancer Metastasis Rev, 2018, 37: 347-354. [22] Ma W, St-Jacques B. Signalling transduction events involved in agonist-induced PGE2/EP4 receptor externalization in cultured rat dorsal root ganglion neurons[J]. Eur J Pain, 2018, 22: 845-861. [23] Park SH, Eber MR, Widner DB, et al. Role of the bone microenvironment in the development of painful complications of skeletal metastases[J]. Cancers (Basel), 2018, 10: 141-154. [24] Ni S, Ling Z, Wang X, et al. Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice[J]. Nat Commun, 2019, 10: 5643-5657. |