[1] Singh D, Agusti A, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019[J]. Eur Respir J, 2019, 53:1900164. doi:10.1183/13993003.00164-2019. [2] He S, Chen D, Hu M, et al. Bronchial epithelial cell extracellular vesicles ameliorate epithelial-mesenchymal transition in COPD pathogenesis by alleviating M2 macrophage polarization[J]. Nanomedicine, 2019, 18: 259-271. [3] Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262: 9412-9420. [4] Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9: 654-659. [5] Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367:eaau6977. doi: 10.1126/science.aau6977. [6] Miranda AM, Lasiecka ZM, Xu Y, et al. Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures[J]. Nat Commun, 2018,9:291. doi: 10.1038/s41467-017-02533-w. [7] Park JE, Dutta B, Tse SW, et al. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift[J]. Oncogene, 2019, 38: 5158-5173. [8] Hou W, Hu S, Li C, et al. Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: a possible link between COPD and lung cancer[J]. Biomed Res Int, 2019, 2019: 2025636. doi: 10.1155/2019/2025636. [9] Benedikter BJ, Volgers C, van Eijck PH, et al. Cigarette smoke extract induced exosome release is mediated by depletion of exofacial thiols and can be inhibited by thiol-antioxidants[J]. Free Radic Biol Med, 2017, 108: 334-344. [10] Gupta R, Radicioni G, Abdelwahab S, et al. Intercel-lular communication between airway epithelial cells is mediated by exosome-like vesicles[J]. Am J Respir Cell Mol Biol, 2019, 60: 209-220. [11] Xu H, Ling M, Xue J, et al. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking[J]. Theranostics, 2018, 8: 5419-5433. [12] Fujita Y, Araya J, Ito S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis[J]. J Extracell Vesicles, 2015, 4:28388. doi: 10.3402/jev.v4.28388. [13] Moon HG, Kim SH, Gao J, et al. CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307: L326-L337. [14] Kojima K, Asai K, Kubo H, et al. Isoflavone aglycones attenuate cigarette smoke-induced emphysema via suppression of neutrophilic inflammation in a COPD murine model[J]. Nutrients, 2019, 11:2023. doi:10.3390/nu11092023. [15] Li N, Liu Y, Cai J. LncRNA MIR155HG regulates M1/M2 macrophage polarization in chronic obstructive pulmonary disease[J]. Biomed Pharmacother, 2019, 117: 109015. doi: 10.1016/j.biopha.2019.109015. [16] Tanno A, Fujino N, Yamada M, et al. Decreased expression of a phagocytic receptor Siglec-1 on alveolar macrophages in chronic obstructive pulmonary disease[J]. Respir Res, 2020, 21: 30. doi: 10.1186/s12931-020-1297-2. [17] Durham GA, Williams J, Nasim MT, et al. Targeting SOCS proteins to control JAK-STAT signalling in disease[J]. Trends Pharmacol Sci, 2019, 40: 298-308. [18] Mizuno S, Soma S, Inada H, et al. SOCS1 antagonist-expressing recombinant bacillus calmette-guerin enhances antituberculosis protection in a mouse model[J]. J Immunol, 2019, 203: 188-197. [19] Dicker AJ, Crichton ML, Pumphrey EG, et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2018, 141: 117-127. [20] Murphy MP, Mcenery T, Mcquillan K, et al. Alpha1 antitrypsin therapy modulates the neutrophil membrane proteome and secretome[J]. Eur Respir J, 2020, 55:1901678. doi: 10.1183/13993003.01678-2019. [21] Fysikopoulos A, Seimetz M, Hadzic S, et al. Ameliora-tion of elastase-induced lung emphysema and reversal of pulmonary hypertension by pharmacological iNOS inhibi-tion in mice[J]. Br J Pharmacol, 2020. doi:10.1111/bph.15057. [22] Ortega VE, Li X, O'Neal WK, et al. The effects of rare SERPINA1 variants on lung function and emphysema in SPIROMICS[J]. Am J Respir Crit Care Med, 2020, 201: 540-554. [23] Genschmer KR, Russell DW, Lal C, et al. Activated PMN exosomes: pathogenic entities causing matrix destruction and disease in the lung[J]. Cell, 2019, 176: 113-126. [24] Liu H, Sun X, Gong X, et al. Human umbilical cord mesenchymal stem cells derived exosomes exert antiapoptosis effect via activating PI3K/Akt/mTOR pathway on H9C2 cells[J]. J Cell Biochem, 2019, 120: 14455-14464. [25] Maremanda KP, Sundar IK, Rahman I. Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunc-tion in mice[J]. Toxicol Appl Pharmacol, 2019, 385: 114788.doi: 10.1016/j.taap.2019.114788. [26] Harrell CR, Miloradovic D, Sadikot R, et al. Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem Cell-Derived product “Exo-d-MAPPS” in attenuation of chronic airway inflammation[J]. Anal Cell Pathol (Amst), 2020, 2020: 3153891.doi: 10.1155/2020/3153891. [27] Kim YS, Kim JY, Cho R, et al. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway[J]. Exp Mol Med, 2017, 49: e284.doi: 10.1038/emm.2016.127. |