[1] Thein SL, Winichagoon P, Hesketh C, et al. The molecular basis of beta-thalassemia in Thailand: Application to prenatal diagnosis[J]. Am J Hum Genet, 1990, 47: 369-375. [2] Galanello R, Origa R. Beta-thalassemia[J]. Orphanet J Rare Dis, 2010,5.doi:10.1186/1750-1172-5-11. [3] Huang SZ, Zhou XD, Zhu H, et al. Detection of beta-thalassemia mutations in the Chinese using amplified DNA from dried blood specimens[J]. Hum Genet, 1990, 84: 129-131. [4] Huang SZ, Zeng FY, Ren ZR, et al. RNA transcripts of the beta-thalassaemia allele IVS-2-654 C-->T: A small amount of normally processed beta-globin mRNA is still produced from the mutant gene[J]. Br J Haematol, 1994, 88: 541-546. [5] Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control[J]. Science, 2016, 353.doi:10.1126/science.aac4354. [6] Kwon YT, Ciechanover A. The ubiquitin code in the ubiquitin-proteasome system and autophagy[J]. Trends Biochem Sci, 2017, 42: 873-886. [7] Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments[J]. Nature, 2008, 454: 1088-1095. [8] Malinovska L, Kroschwald S, Munder MC, et al. Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates[J]. Mol Biol Cell, 2012, 23: 3041-3056. [9] Park SH, Kukushkin Y, Gupta R, et al. PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone[J]. Cell, 2013, 154: 134-145. [10] Khandros E, Weiss MJ. Protein quality control during erythropoiesis and hemoglobin synthesis[J]. Hematol Oncol Clin North Am, 2010, 24: 1071-1088. [11] Li W, Xie S, Guo X, et al. A novel transgenic mouse model produced from lentiviral germline integration for the study of beta-thalassemia gene therapy[J]. Haematologica, 2008, 93: 356-362. [12] Liu J, Zhang J, Ginzburg Y, et al. Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis[J]. Blood, 2013, 121: e43-e49. [13] Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30: 2114-2120. [14] Kim D, Langmead B, Salzberg S L. HISAT: A fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12: 357-360. [15] Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25: 2078-2079. [16] Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30: 923-930. [17] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15.doi:10.1186/s13059-014-0550-8. [18] Yu G, Wang LG, Han Y, et al.ClusterProfiler: An R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16: 284-287. [19] Mukai K, Shimizu T, Igarashi J. Phosphorylation of a heme-regulated eukaryotic initiation factor 2alpha kinase enhances the interaction with heat-shock protein 90 and substantially upregulates kinase activity[J]. Protein Pept Lett, 2011, 18: 1251-1257. [20] Mattoo RU, Sharma SK, Priya S, et al. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates[J]. J Biol Chem, 2013, 288: 21399-21411. [21] Rauch JN, Gestwicki JE. Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro[J]. J Biol Chem, 2014, 289: 1402-1414. [22] Arlet JB, Ribeil JA, Guillem F, et al. HSP70 sequestration by free alpha-globin promotes ineffective erythropoiesis in beta-thalassaemia[J]. Nature, 2014, 514: 242-246. [23] Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines[J]. Cell, 1998, 92: 351-366. [24] Matte A, De Franceschi L. Oxidation and erythropoiesis[J]. Curr Opin Hematol, 2019, 26: 145-151. [25] Khandros E, Thom CS, D'souza J, et al. Integrated protein quality-control pathways regulate free alpha-globin in murine beta-thalassemia[J]. Blood, 2012, 119: 5265-5275. [26] Taghavifar F, Hamid M, Shariati G. Gene expression in blood from an individual with beta-thalassemia: An RNA sequence analysis[J]. Mol Genet Genomic Med, 2019, 7.doi:10.1002/mgg3.740. |