[1] Ertl G, Frantz S. Healing after myocardial infarction[J]. Cardiovasc Res, 2005, 66:22-32.
[2] Anstead GM, Hart LM, Sunahara JF, et al. Phenytoin in wound healing[J]. Ann Pharmacother, 1996, 30:768-775.
[3] Dill RE, Miller EK, Weil T, et al. Phenytoin increases gene expression for platelet-derived growth factor B chain in macrophages and monocytes[J]. J Periodontol, 1993, 64:169-173.
[4] Weihrauch D, Arras M, Zimmermann R, et al. Importance of monocytes/macrophages and fibroblasts for healing of micronecroses in porcine myocardium[J]. Mol Cell Biochem, 1995, 147:13-19.
[5] Nakade O, Baylink DJ, Lau KH. Phenytoin at micromolar concentrations is an osteogenic agent for human-mandible-derived bone cells in vitro[J]. J Dent Res, 1995, 74:331-337.
[6] Zhou X, Li YM, Ji WJ, et al. Phenytoin can accelerate the healing process after experimental myocardial infarction? [J] Int J Cardiol, 2006, 107:21-29.
[7] 李贺,周欣,舒珺,等.骨髓间充质干细胞移植对心肌缺血-再灌注大鼠心肌胶原与血管新生的影响[J].中国动脉硬化杂志.2008,16:813-818.
[8] Hochman JS, Choo H. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage[J]. Circulation, 1987, 75:299-306.
[9] Reffelmann T, Hale SL, Dow JS, et al. No-reflow phenomenon persists long-term after ischemia/reperfusion in the rat and predicts infarct expansion[J]. Circulation, 2003, 108:2911-2917.
[10] Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide[J]. J Clin Invest, 1995, 95:1798-1807.
[11] Gospodarowicz D. Expression and control of vascular endothelial cells: proliferation and differentiation by fibroblast growth factors[J]. J Invest Dermatol, 1989, 93:39S-47S.
[12] Spirito P, Fu YM, Yu ZX, et al. Immunohistochemical localization of basic and acidic fibroblast growth factors in the developing rat heart[J]. Circulation, 1991, 84:322-332.
[13] Folkman J, Klagsbrun M. Angiogenic factors[J]. Science, 1987, 235:442-447.
[14] Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction[J]. Int J Cardiol, 2008, 130:147-158.
[15] Sunderkotter C, Steinbrink K, Goebeler M, et al. Macrophages and angiogenesis[J]. J Leukoc Biol, 1994, 55:410-422.
[16] Ono M, Torisu H, Fukushi J, et al. Biological implications of macrophage infiltration in human tumor angiogenesis[J]. Cancer Chemother Pharmacol, 1999, 43 Suppl:S69-71.
[17] Luikart SD, Levay-Young B, Hinkel T, et al. Mactinin treatment promotes wound-healing-associated inflammation in urokinase knockout mice[J]. Wound Repair Regen, 2006, 14:123-128.
[18] van Amerongen MJ, Harmsen MC, van Rooijen N, et al. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice[J]. Am J Pathol, 2007, 170:818-829.
[19] Leor J, Rozen L, Zuloff-Shani A, et al. Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart[J]. Circulation, 2006, 114:I94-100.
[20] Maulik N. Angiogenic signal during cardiac repair[J]. Mol Cell Biochem, 2004, 264:13-23.
[21] Heymans S, Luttun A, Nuyens D, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure[J]. Nat Med, 1999, 5:1135-1142.
[22] Schaper W, Scholz D. Factors regulating arteriogenesis[J]. Arterioscler Thromb Vasc Biol, 2003, 23:1143-1151.
[23] Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications[J]. Circulation, 1990, 81:1161-1172.
|