[1] Zheng Y, Zhu L, Qin ZY, et al. Modulation of cellular metabolism by protein crotonylation regulates pancreatic cancer progression[J]. Cell Rep, 2023, 42. doi:10.1016/j.celrep.2023.112666. [2] Zhang K, Li YJ, Peng LJ, et al. M2 macrophage-derived exosomal miR-193b-3p promotes progression and glutamine uptake of pancreatic cancer by targeting TRIM62[J]. Biol Direct, 2023, 18:1. doi:10.1186/s13062-023-00356-y. [3] Liu H, Zhang H, Liu X, et al. Pancreatic stellate cells exploit Wnt/β-catenin/TCF7-mediated glutamine metabolism to promote pancreatic cancer cells growth[J]. Cancer Lett, 2023, 555:216040. doi:10.1016/j.canlet.2022.216040. [4] Zhang D, Zhao L, Luo M, et al. Yap-Myc signaling induces pancreatic stellate cell activation through regulating glutaminolysis[J]. Exp Cell Res, 2022, 411:113000. doi:10.1016/j.yexcr.2021.113000. [5] Rabe P, Liebing AD, Krumbholz P, et al. Succinate receptor 1 inhibits mitochondrial respiration in cancer cells addicted to glutamine[J]. Cancer Lett, 2022, 526:91-102. doi:10.1016/j.canlet.2021.11.024. [6] Liu C, Deng S, Xiao Z, et al. Glutamine is a substrate for glycosylation and CA19-9 biosynthesis through hexosamine biosynthetic pathway in pancreatic cancer[J]. Discov Oncol, 2023, 14:20. doi:10.1007/s12672-023-00628-z. [7] Campbell S, Mesaros C, Izzo L, et al. Glutamine deprivation triggers NAGK-dependent hexosamine salvage[J]. eLife, 2021, 10:e62644. doi:10.7554/eLife.62644. [8] Xiao Z, Deng S, Liu H, et al. Glutamine deprivation induces ferroptosis in pancreatic cancer cells[J]. Acta Biochim Biophys Sin, 2023, 55:1288-1300. doi:10.3724/abbs.2023029. [9] Park SJ, Yoo HC, Ahn E, et al. Enhanced glutaminolysis drives hypoxia-induced chemoresistance in pancreatic cancer[J]. Cancer Res, 2023, 83:735-752. doi:10.1158/0008-5472.CAN-22-2045. [10] Kim MJ, Kim HS, Kang HW, et al. SLC38A5 modulates ferroptosis to overcome gemcitabine resistance in pancre-atic cancer[J]. Cells, 2023, 12:2509. doi:10.3390/cells12202509. [11] Ganguly K, Bhatia R, Rauth S, et al. Mucin 5AC serves as the nexus for β-catenin/c-Myc interplay to promote glutamine dependency during pancreatic cancer chemoresistance[J]. Gastroenterology, 2022, 162:253-268.e13. doi:10.1053/j.gastro.2021.09.017. [12] Dash S, Ueda T, Komuro A, et al. MYC/Glutamine dependency is a therapeutic vulnerability in pancreatic cancer with deoxycytidine kinase inactivation-induced gemcitabine resistance[J]. Mol Cancer Res MCR, 2023, 21:444-457. doi:10.1158/1541-7786.MCR-22-0554. [13] Wang W, Pan H, Ren F, et al. Targeting ASCT2-mediated glutamine metabolism inhibits proliferation and promotes apoptosis of pancreatic cancer cells[J]. Biosci Rep, 2022, 42:BSR20212171. doi:10.1042/BSR20212171. [14] Akuetteh PDP, Huang H, Wu S, et al. Synthetic oleanane triterpenoid derivative CDDO-Me disrupts cellular bioenergetics to suppress pancreatic ductal adenocarcinoma via targeting SLC1A5[J]. J Biochem Mol Toxicol, 2022, 36:e23192. doi:10.1002/jbt.23192. [15] Ren P, Wu NA, Fu S, et al. miR-122-5p restrains pancreatic cancer cell growth and causes apoptosis by negatively regulating ASCT2[J]. Anticancer Res, 2023, 43:4379-4388. doi:10.21873/anticanres.16634. [16] Kim JH, Lee J, Cho YR, et al. TFEB supports pancreatic cancer growth through the transcriptional regulation of glutaminase[J]. Cancers, 2021, 13:483. doi:10.3390/cancers13030483. [17] Ozcan SC, Mutlu A, Altunok TH, et al. Simultaneous inhibition of PFKFB3 and GLS1 selectively kills KRAS-transformed pancreatic cells[J]. Biochem Biophys Res Commun, 2021, 571:118-124. doi:10.1016/j.bbrc.2021.07.070. [18] Xu Y, Yu Z, Fu H, et al. Dual inhibitions on glucose/glutamine metabolisms for nontoxic pancreatic cancer therapy[J]. ACS Appl Mater Interfaces, 2022, 14:21836-21847. doi:10.1021/acsami.2c00111. [19] Ma Y, Ling S, Li Y, et al. Loss of heterozygosity for KrasG12D promotes malignant phenotype of pancreatic ductal adenocarcinoma by activating HIF-2α-c-Myc-regulated glutamine metabolism[J]. Int J Mol Sci, 2022, 23:6697. doi:10.3390/ijms23126697. [20] Kremer DM, Nelson BS, Lin L, et al. GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis[J]. Nat Commun, 2021, 12:4860. doi:10.1038/s41467-021-24859-2. [21] Hu T, Shukla SK, Vernucci E, et al. Metabolic rewiring by loss of Sirt5 promotes Kras-induced pancreatic cancer progression[J]. Gastroenterology, 2021, 161:1584-1600. doi:10.1053/j.gastro.2021.06.045. [22] Yang Y, Zheng M, Han F, et al. Ziprasidone suppresses pancreatic adenocarcinoma cell proliferation by targeting GOT1 to trigger glutamine metabolism reprogramming[J]. J Mol Med Berl Ger, 2022, 100:599-612. doi:10.1007/s00109-022-02181-8. [23] Recouvreux MV, Grenier SF, Zhang Y, et al. Glutamine mimicry suppresses tumor progression through asparagine metabolism in pancreatic ductal adenocarcinoma[J]. Nat Cancer, 2024, 5:100-113. doi:10.1038/s43018-023-00649-1. [24] Encarnación-Rosado J, Sohn ASW, et al. Targeting pancreatic cancer metabolic dependencies through glutamine antagonism[J]. Nat Cancer, 2024, 5:85-99. doi:10.1038/s43018-023-00647-3. [25] Frejlachova A, Lencova R, Venhauerova A, et al. The combina-tion of immunotherapy and a glutamine metabo-lism inhibitor represents an effective therapeutic strategy for advanced and metastatic murine pancreatic adenocarcinoma[J]. Int Immunopharmacol, 2023, 118:110150. doi:10.1016/j.intimp.2023.110150. |