基础医学与临床 ›› 2023, Vol. 43 ›› Issue (1): 2-11.doi: 10.16352/j.issn.1001-6325.2023.01.0002
• 特邀专题:成体干细胞基础创新与临床转化 • 上一篇 下一篇
汪海燕, 韩钦*, 赵春华*
收稿日期:
2022-07-13
修回日期:
2022-10-10
出版日期:
2023-01-05
发布日期:
2022-12-27
通讯作者:
*hanqin@ibms.pumc.edu.cn; zhaochunhua@ibms.pumc.edu.cn
基金资助:
WANG Haiyan, HAN Qin*, ZHAO Chunhua*
Received:
2022-07-13
Revised:
2022-10-10
Online:
2023-01-05
Published:
2022-12-27
Contact:
*hanqin@ibms.pumc.edu.cn; zhaochunhua@ibms.pumc.edu.cn
摘要: 间充质干细胞(MSCs)是具有自我更新、多向分化和免疫调节能力的多能干细胞。越来越多的研究证明了MSCs在免疫紊乱相关疾病治疗中的有益作用。然而体内获取或体外培养的MSCs的免疫调节能力都存在异质性,MSCs的免疫调节能力也会受到微环境的调控。本综述概述MSCs的免疫抑制能力和免疫支持能力的机制,介绍最近关于MSCs免疫调节机制的研究及其免疫调节能力可塑性假说,并讨论在细胞生产阶段增强MSCs免疫调节能力的策略,以期为MSCs临床转化研究提供参考。
中图分类号:
汪海燕, 韩钦, 赵春华. 间充质干细胞的免疫调节可塑性及其临床应用策略[J]. 基础医学与临床, 2023, 43(1): 2-11.
WANG Haiyan, HAN Qin, ZHAO Chunhua. Immunomodulatory plasticity of mesenchymal stem cells and the strategy of clinical application[J]. Basic & Clinical Medicine, 2023, 43(1): 2-11.
[1] | Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8: 315-317. |
[2] | Levy O, Kuai R, Siren EMJ, et al. Shattering barriers toward clinically meaningful MSC therapies[J]. Sci Adv, 2020, 6: 6884. |
[3] | Renesme L, Pierro M, Cobey KD, et al. Definition and characteristics of mesenchymal stromal cells in preclinical and clinical studies: a scoping review[J]. Stem Cells Transl Med, 2022, 11: 44-54. |
[4] | Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics[J]. Nature, 2018, 557: 335-342. |
[5] | Liu J, Li P, Zhu J, et al. Mesenchymal stem cell-mediated immunomodulation of recruited mononuclear phagocytes during acute lung injury: a high-dimensional analysis study[J]. Theranostics, 2021, 11: 2232-2246. |
[6] | Zhu R, Yan T, Feng Y, et al. Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms[J]. Cell Res, 2021, 31: 1244-1262. |
[7] | Kosaric N, Srifa W, Bonham CA, et al. Macrophage subpopulation dynamics shift following intravenous infusion of mesenchymal stromal cells[J]. Mol Ther, 2020, 28: 2007-2022. |
[8] | Moloudizargari M, Govahi A, Fallah M, et al. The mechanisms of cellular crosstalk between mesenchymal stem cells and natural killer cells: Therapeutic implications[J]. J Cell Physiol, 2021, 236: 2413-2429. |
[9] | Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J]. Nat Rev Nephrol, 2018, 14: 493-507. |
[10] | Jiang W, Xu J. Immune modulation by mesenchymal stem cells[J]. Cell Proliferation, 2020, 53: e12712. |
[11] | Chen X, Liu Q, Huang W, et al. Stanniocalcin-2 contributes to mesenchymal stromal cells attenuating murine contact hypersensitivity mainly via reducing CD8(+) Tc1 cells[J]. Cell Death Dis, 2018, 9: 548. |
[12] | Nikolic A, Simovic Markovic B, Gazdic M, et al. Intraperitoneal administration of mesenchymal stem cells ameliorates acute dextran sulfate sodium-induced colitis by suppressing dendritic cells[J]. Biomed Pharmacother, 2018, 100: 426-432. |
[13] | Yao G, Qi J, Liang J, et al. Mesenchymal stem cell transplantation alleviates experimental Sjögren's syndrome through IFN-β/IL-27 signaling axis[J]. Theranostics, 2019, 9: 8253-8265. |
[14] | Lai P, Weng J, Guo L, et al. Novel insights into MSC-EVs therapy for immune diseases[J]. Biomarker Res, 2019, 7: 6. |
[15] | Nakazaki M, Morita T, Lankford K L, et al. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury[J]. J Extracell Vesicles, 2021, 10: e12137. |
[16] | Bazzoni R, Takam Kamga P, Tanasi I, et al. Extra-cellular vesicle-dependent communication between mesenchymal stromal cells and immune effector cells[J]. Front Cell Dev Biol, 2020, 8: 596079. |
[17] | Bulati M, Miceli V, Gallo A, et al. The immunomodula-tory properties of the human amnion-derived mesenchymal stromal/stem cells are induced by INF-γ produced by activated lymphomonocytes and are mediated by cell-to-cell contact and soluble factors[J]. Front Immunol, 2020, 11: 54. |
[18] | Li C, Jin Y, Wei S, et al. Hippo signaling controls NLR family pyrin domain containing 3 activation and governs immunoregulation of mesenchymal stem cells in mouse liver injury[J]. Hepatology (Baltimore), 2019, 70: 1714-1731. |
[19] | Sheng M, Lin Y, Xu D, et al. CD47-mediated hedgehog/SMO/GLI1 signaling promotes mesenchymal stem cell immunomodulation in mouse liver inflammation[J]. Hepatology (Baltimore), 2021, 74: 1560-1577. |
[20] | Li Y, Zhang D, Xu L, et al. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models[J]. Cell Mol Immunol, 2019, 16: 908-920. |
[21] | Zheng S, Huang K, Xia W, et al. Mesenchymal stromal cells rapidly suppress TCR signaling-mediated cytokine transcription in activated T cells through the ICAM-1/CD43 interaction[J]. Front Immunol, 2021, 12: 609544. |
[22] | Corsello T, Amico G, Corrao S, et al. Wharton's jelly mesenchymal stromal cells from human umbilical cord: a close-up on immunomodulatory molecules featured in situ and in vitro[J]. Stem Cell Rev Rep, 2019, 15: 900-918. |
[23] | Mittal SK, Cho W, Elbasiony E, et al. Mesenchymal stem cells augment regulatory T cell function via CD80-mediated interactions and promote allograft survival[J]. Am J Transpl, 2022, 22: 1564-1577. |
[24] | Liu D, Gao Y, Liu J, et al. Intercellular mitochondrial transfer as a means of tissue revitalization[J]. Signal Transduct Target Ther, 2021, 6: 65. |
[25] | Paliwal S, Chaudhuri R, Agrawal A, et al. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer[J]. J Biomed Sci, 2018, 25: 31. |
[26] | Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer[J]. Am J Respir Crit Care Med, 2017, 196: 1275-1286. |
[27] | Luz-Crawford P, Hernandez J, Djouad F, et al. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer[J]. Stem Cell Res Ther, 2019, 10: 232. |
[28] | Beier UH, Angelin A, Akimova T, et al. Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival[J]. FASEB J, 2015, 29: 2315-2326. |
[29] | Lu T, Zhang J, Cai J, et al. Extracellular vesicles derived from mesenchymal stromal cells as nanotherapeutics for liver ischaemia-reperfusion injury by transferring mitochondria to modulate the formation of neutrophil extracellular traps[J]. Biomaterials, 2022, 284: 121486. |
[30] | Fu Y, Sui B, Xiang L, et al. Emerging understanding of apoptosis in mediating mesenchymal stem cell therapy[J]. Cell Death Dis, 2021, 12: 596. |
[31] | Luk F, de White SFH,Korevaar SS, et al. Inactivated mesenchymal stem cells maintain immunomodulatory capacity[J]. Stem Cells Dev, 2016, 25: 1342-1354. |
[32] | He X, Hong W, Yang J, et al. Spontaneous apoptosis of cells in therapeutic stem cell preparation exert immunomodulatory effects through release of phosphatidylserine[J]. Signal Transduct Target Ther, 2021, 6: 270. |
[33] | Zheng C, Sui B, Zhang X, et al. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes[J]. J Extracell Vesicles, 2021, 10: e12109. |
[34] | Chow L, Johnson V, Impastato R, et al. Antibacterial activity of human mesenchymal stem cells mediated directly by constitutively secreted factors and indirectly by activation of innate immune effector cells[J]. Stem Cells Transl Med, 2020, 9: 235-249. |
[35] | Normanton M, Alvarenga H, Hamerschlak N, et al. Interleukin 7 plays a role in T lymphocyte apoptosis inhibition driven by mesenchymal stem cell without favoring proliferation and cytokines secretion[J]. PLoS One, 2014, 9: e106673. |
[36] | Xiong Y, Xiong Y, Zhang H, et al. hPMSCs-derived exosomal miRNA-21 protects against aging-related oxidative damage of CD4(+) T cells by targeting the PTEN/PI3K-Nrf2 axis[J]. Front Immunol, 2021, 12: 780897. |
[37] | Bassani B, Tripodo C, Portararo P, et al. CD40 activity on mesenchymal cells negatively regulates OX40L to maintain bone marrow immune homeostasis under stress conditions[J]. Front Immunol, 2021, 12: 662048. |
[38] | He Y, Qu Y, Meng B, et al. Mesenchymal stem cells empower T cells in the lymph nodes via MCP-1/PD-L1 axis[J]. Cell Death Dis, 2022, 13: 365. |
[39] | Wang Y, Chen X, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications[J]. Nat Immunol, 2014, 15: 1009-1016. |
[40] | Waterman RS, Tomchuck SL, Henkle SL, et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype[J]. PLoS One, 2010, 5: e10088. |
[41] | Beldi G, Khosravi M, Abdelgawad ME, et al. TNFα/TNFR2 signaling pathway: an active immune checkpoint for mesenchymal stem cell immunoregulatory function[J]. Stem Cell Res Ther, 2020, 11: 281. |
[42] | Zhang C, Zhou L, Wang Z, et al. Eradication of specific donor-dependent variations of mesenchymal stem cells in immunomodulation to enhance therapeutic values[J]. Cell Death Dis, 2021, 12: 357. |
[43] | Mendt M, Daher M, Basar R, et al. Metabolic reprogramming of GMP grade cord tissue derived mesenchymal stem cells enhances their suppressive potential in GVHD[J]. Front Immunol, 2021, 12: 631353. |
[44] | Yao M, Cui B, Zhang W, et al. Exosomal miR-21 secreted by IL-1β-primed-mesenchymal stem cells induces macrophage M2 polarization and ameliorates sepsis[J]. Life Sci, 2021, 264: 118658. |
[45] | Deng L, Li H, Su X, et al. Chlorzoxazone, a small molecule drug, augments immunosuppressive capacity of mesenchymal stem cells via modulation of FOXO3 phosphorylation[J]. Cell Death Dis, 2020, 11: 158. |
[46] | Liu Y, Yuan X, Muñoz N, et al. Commitment to aerobic glycolysis sustains immunosuppression of human mesenchymal stem cells[J]. Stem Cells Transl Med, 2019, 8: 93-106. |
[47] | Killer MC, Nold P, Henkenius K, et al. Immunosuppressive capacity of mesenchymal stem cells correlates with metabolic activity and can be enhanced by valproic acid[J]. Stem Cell Res Ther, 2017, 8: 100. |
[48] | Contreras-Lopez R, Elizondo-Vega R, Luque-Campos N, et al. The ATP synthase inhibition induces an AMPK-dependent glycolytic switch of mesenchymal stem cells that enhances their immunotherapeutic potential[J]. Theranostics, 2021, 11: 445-460. |
[49] | Jitschin R, Böttcher M, Saul D, et al. Inflammation-induced glycolytic switch controls suppressivity of mesenchymal stem cells via STAT1 glycosylation[J]. Leukemia, 2019, 33: 1783-1796. |
[50] | Planat-Benard V, Varin A, Casteilla L. MSCs and inflammatory cells crosstalk in regenerative medicine: concerted actions for optimized resolution driven by energy meta-bolism[J]. Front Immunol, 2021, 12: 626755. |
[51] | Lim J, Heo J, Ju H, et al. Glutathione dynamics determine the therapeutic efficacy of mesenchymal stem cells for graft-versus-host disease via CREB1-NRF2 pathway[J]. Sci Adv, 2020, 6: 1-18. |
[52] | Gao L, Cen S, Wang P, et al. Autophagy improves the immunosuppression of CD4+ T cells by mesenchymal stem cells through transforming growth factor-β1[J]. Stem Cells Transl Med, 2016, 5: 1496-1505. |
[53] | Dang S, Xu H, Xu C, et al. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis[J]. Autophagy, 2014, 10: 1301-1315. |
[54] | Zhang J, Huang J, Gu Y, et al. Inflammation-induced inhibition of chaperone-mediated autophagy maintains the immunosuppressive function of murine mesenchymal stromal cells[J]. Cell Mol Immunol, 2021, 18: 1476-1488. |
[55] | Wong SW, Lenzini S, Cooper MH, et al. Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking[J]. Sci Adv, 2020, 6: 1-13. |
[56] | Regmi S, Seo Y, Ahn JS, et al. Heterospheroid forma-tion improves therapeutic efficacy of mesenchymal stem cells in murine colitis through immunomodulation and epithelial regeneration[J]. Biomaterials, 2021, 271: 120752. |
[57] | Deng J, Li M, Meng F, et al. 3D spheroids of human placenta-derived mesenchymal stem cells attenuate spinal cord injury in mice[J]. Cell Death Dis, 2021, 12: 1096. |
[58] | Olmedo-Moreno L, Aguilera Y, Baliña-Sánchez C, et al. Heterogeneity of in vitro expanded mesenchymal stromal cells and strategies to improve their therapeutic actions[J]. Pharmaceutics, 2022, 14: 1112. |
[59] | Bowles AC, Kouroupis D, Willman MA, et al. Signature quality attributes of CD146(+) mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency[J]. Stem Cells, 2020, 38: 1034-1049. |
[60] | Zhang C, Han X, Liu J, et al. Single-cell transcriptomic analysis reveals the cellular heterogeneity of mesenchymal stem cells[J]. Genom Proteom Bioinform, 2022, 20: 70-86. |
[61] | Xie Z, Yu W, Ye G, et al. Single-cell RNA sequencing analysis of human bone-marrow-derived mesenchymal stem cells and functional subpopulation identification[J]. Exp Mol Med, 2022, 54: 483-492. |
[62] | Srinivasan A, Sathiyanathan P, Yin L, et al. Strategies to enhance immunomodulatory properties and reduce heterogeneity in mesenchymal stromal cells during ex vivo expansion[J]. Cytotherapy, 2022, 24: 456-472. |
[63] | Tolomeo AM, Castagliuolo I, Piccoli M, et al. Extra-cellular vesicles secreted by mesenchymal stromal cells exert opposite effects to their cells of origin in murine sodium dextran sulfate-induced colitis[J]. Front Immunol, 2021, 12: 627605. |
[64] | Gomzikova MO, James V, Rizvanov AA. Therapeutic application of mesenchymal stem cells derived extracellular vesicles for immunomodulation[J]. Front Immunol, 2019, 10: 2663. |
[65] | Zhu Y, Ge J, Huang C, et al. Application of mesen-chymal stem cell therapy for aging frailty: from mechanisms to therapeutics[J]. Theranostics, 2021, 11: 5675-5685. |
[1] | 龚金涛, 厉建伟, 李玉恒, 李堑, 赵春华. 骨髓间充质干细胞缓解模拟微重力对小鼠大脑皮质的不利影响[J]. 基础医学与临床, 2024, 44(6): 772-778. |
[2] | 武文婧, 高竞溪, 赵晓妍, 孙昭, 韩钦, 赵春华. 芳香烃受体调控人脂肪间充质干细胞的免疫调节功能[J]. 基础医学与临床, 2023, 43(6): 889-897. |
[3] | 王玉洁, 杨孟迪, 何风英, 丁雨露, 孙琳楠, 甄东户. 免疫调节基因的多态性与Graves病易感性的相关性研究进展[J]. 基础医学与临床, 2023, 43(3): 495-499. |
[4] | 商利鹏, 刘国祥, 丁晓燕, 李冰, 赵春华, 李霄霞. 间充质干细胞在衰老相关疾病应用中的研究进展[J]. 基础医学与临床, 2023, 43(1): 38-45. |
[5] | 张蓝月, 张学东. 分泌蛋白Metrnl在不同疾病中作用的研究进展[J]. 基础医学与临床, 2022, 42(11): 1767-1770. |
[6] | 陈民佳, 汪晓月, 陈客宏, 陆红祥. 间充质干细胞治疗肺纤维化的研究进展[J]. 基础医学与临床, 2021, 41(7): 1056-1059. |
[7] | 张怡 周彪 郭政宏 龙虎 严亨秀. CD11 c+DCs促K14-VEGF转基因小鼠银屑病样发病[J]. 基础医学与临床, 2018, 38(2): 205-212. |
[8] | 朱怡 杨晓清 张玉泉. CD26在T细胞及相关免疫性疾病中的研究进展[J]. 基础医学与临床, 2018, 38(11): 1635-1639. |
[9] | 贺毅 李恒 张凤 唐小三 张贵涛 李晓红. 与脐血多能干细胞共培养的小鼠淋巴细胞对AD小鼠的免疫调节作用[J]. 基础医学与临床, 2017, 37(8): 1072-1076. |
[10] | 赵微 白丽. 肽类药物及其抗肿瘤的研究进展[J]. 基础医学与临床, 2014, 34(7): 998-1001. |
[11] | 王华阳 董召刚 曲迅. 蜕膜间充质干细胞免疫调节作用及临床应用研究进展[J]. 基础医学与临床, 2012, 32(3): 340-344. |
[12] | 孙昭 韩钦 赵春华. 骨髓和脂肪来源的间充质干细胞免疫调节作用的比较[J]. 基础医学与临床, 2012, 32(2): 128-132. |
[13] | 王椋 曲学彬 赵春华. 慢性粒细胞白血病肿瘤干细胞的免疫调节功能[J]. 基础医学与临床, 2011, 31(4): 404-408. |
[14] | 蒋志琼 唐中 袁国华 谭竟. 间充质干细胞在T细胞免疫反应中的调节作用[J]. 基础医学与临床, 2010, 30(5): 547-549. |
[15] | 薛小军 涂小煌 陈少全. 间充质干细胞治疗急性胰腺炎的研究进展[J]. 基础医学与临床, 2010, 30(10): 1109-1111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备07012236号
网站版权 © 《基础医学与临床》编辑部