[1] |
Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J]. Biomaterials, 2020, 258: 120286. doi: 10.1016/j.biomaterials.2020.120286.
|
[2] |
Zhou J, Liu W, Zhao X, et al. Natural melanin/alginate hydrogels achieve cardiac repair through ROS ccavenging and macrophage polarization[J]. Adv Sci (Weinh), 2021, 8: e2100505. doi: 10.1002/advs.202100505.
|
[3] |
Lin S, Zhao HS, Xu C, et al. Bioengineered zinc oxide nanoparticle-loaded hydrogel for combinative treatment of spinal cord transection[J]. Front Bioeng Biotechnol, 2021, 9: 796361. doi: 10.3389/fbioe.2021.796361.
|
[4] |
Hao T, Li J, Yao F, et al. Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose-derived stem cells and cardiac repair[J]. ACS nano, 2017, 11: 5474-5488.
|
[5] |
Hao T, Qian M, Zhang Y, et al. An injectable dual-function hydrogel protects against myocardial ischemia/reperfusion injury by modulating ROS/NO disequilibrium [J]. Adv Sci (Weinh), 2022, e2105408. doi: 10.1002/advs.202105408.
|
[6] |
Yang J, Liang J, Zhu Y, et al. Fullerol-hydrogel microfluidic spheres for in situ redox regulation of stem cell fate and refractory bone healing[J]. Bioact Mater, 2021, 6: 4801-4815.
|
[7] |
Thi PL, Lee Y, Tran DL, et al. In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy[J]. Acta Biomater, 2020, 103: 142-152.
|
[8] |
Thirupathi Kumara Raja S, Thiruselvi T, Aravindhan R, et al. In vitro and in vivo assessments of a 3-(3,4-dihydroxyphenyl)-2-propenoic acid bioconjugated gelatin-based injectable hydrogel for biomedical applications[J]. J Mater Chem B, 2015, 3: 1230-1244.
|
[9] |
Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses[J]. Food Chem, 2006, 99: 191-203.
|
[10] |
Koganov MM, Dueva OV, Tsorin BL. Activities of plant-derived phenols in a fibroblast cell culture model[J]. J Nat Prod, 1999, 62: 481-483.
|
[11] |
Robert B, Chenthamara D, Subramaniam S. Fabrication and biomedical applications of arabinoxylan, pectin, chitosan, soy protein, and silk fibroin hydrogels via laccase-Ferulic acid redox chemistry[J]. Int J Biol Macromol, 2022, 201: 539-556.
|
[12] |
龙洋. 低弹性模量水凝胶力学性能测定方法的研究[D]. 重庆: 重庆大学, 2017: 28-41.
|
[13] |
Damasceno SS, Dantas BB, Ribeiro-Filho J, et al. Chemical properties of caffeic and ferulic acids in biological system: implications in cancer therapy. A review[J]. Curr Pharm Des, 2017, 23: 3015-3023.
|
[14] |
Wang L, Li Y, Huang G, et al. Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients[J]. Crit Rev Biotechnol, 2016, 36: 553-565.
|
[15] |
Khetan S, Guvendiren M, Legant WR, et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels[J]. Nat Mater, 2013, 12: 458-465.
|
[16] |
Kirschner CM, Anseth KS. Hydrogels in healthcare: from static to dynamic material microenvironments[J]. Acta Biomater, 2013, 61: 931-944.
|
[17] |
Liu C, Bae KH, Yamashita A, et al. Thiol-mediated synthesis of hyaluronic acid-epigallocatechin-3-O-gallate conjugates for the formation of injectable hydrogels with free radical scavenging property and degradation resistance[J]. Biomacromolecules, 2017, 18: 3143-3155.
|