[1]Coelho M, Raposo L, Goodfellow BJ, et al. The potential of metabolomics in the diagnosis of thyroid cancer[J]. Int J Mol Sci, 2020,21:5272.doi:10.3390/ijms21155272. [2]Asa SL. The current histologic classification of thyroid cancer[J]. Endocrinol Metab Clin North Am, 2019,48: 1-22. [3]高伟波, 陈书长, 赵春华. 肿瘤干细胞与肿瘤耐药[J]. 基础医学与临床, 2006, 26:662-667. [4]Han SA, Jang JH, Won KY, et al. Prognostic value of putative cancer stem cell markers (CD24, CD44, CD133, and ALDH1) in human papillary thyroid car-cinoma[J]. Pathol Res Pract, 2017,213:956-963. [5]Hardin H, Helein H, Meyer K, et al. Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of incRNAs[J]. Lab Invest, 2018, 98: 1133-1142. [6]Cho JM, Lee HJ, Chung JH, et al. Papillary thyroid cancer tumor spheres cultured by passaging without sorting exhibit cancer stemness[J]. Anticancer Res, 2020, 40:3801-3809. [7]Haghpanah V, Fallah P, Naderi M, et al. Cancer stem-like cell behavior in anaplastic thyroid cancer: a challenging dilemma[J]. Life Sci, 2016, 146:34-39. [8]Todaro M, Iovino F, Eterno V, et al. Tumorigenic and metastatic activity of human thyroid cancer stem cells.[J]. Cancer Res, 2010, 70:8874-8885. [9]Yuji N, Mika S, Norisato M. Cancer stem cells in the thyroid[J]. Front Endocrinol(Lausanne), 2016, 7:20.doi:10.3389/fendo.2016.00020. [10]Shimamura M, Nagayama Y, Matsuse M, et al. Analysis of multiple markers for cancer stem-like cells in human thyroid carcinoma cell lines[J]. Endocr J, 2014, 61:481-490. [11]Shiraiwa K, Matsuse M, Nakazawa Y,et al. JAK/STAT3 and NF-κB signaling pathways regulate cancer stem-cell properties in anaplastic thyroid cancer cells.[J]. Thyroid, 2019,29:674-682. [12]Rao AS, Kremenevskaja N, von Wasielewski R, et al. Wnt/beta-catenin signaling mediates antineoplastic effects of imatinib mesylate (gleevec) in anaplastic thyroid cancer[J]. J Clin Endocrinol Metab, 2006, 91:159-168. [13]许力凡, 张记, 田志强,等. 肿瘤抗药性的表观遗传学调控机制[J]. 基础医学与临床, 2013, 33:1638-1641. [14]Zhu G, Xie L, Miller D. Expression of microRNAs in thyroid carcinoma[J].Methods Mol Biol, 2017, 1717: 261-280. [15]Ravi N, Yang M, Mylona N, et al. Global RNA expression and DNA methylation patterns in primary anaplastic thyroid cancer[J]. Cancers, 2020, 12:680.doi:10.3390/cancers12030680. [16]Kotian S, Zhang L, Boufraqech M,et al. Dual Inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 inhibits thyroid cancer growth and metastases[J]. Clin Cancer Res,2017,23:5044-5054. [17]Lin CL, Tsai ML, Lin CY, et al. HDAC1 and HDAC2 double knockout triggers cell apoptosis in advanced thyroid cancer[J]. Int J Mol Sci, 2019, 20. doi: 10.3390/ijms20020454. [18]Xie Z, X Li, He Y, et al. Immune cell confrontation in the papillary thyroid carcinoma microenvironment[J]. Front Endocrinol(Lausanne), 2020,11:570604. doi: 10.3389/fendo.2020.570604. [19]Varricchi G, Loffredo S, Marone G, et al. The immune landscape of thyroid cancer in the context of immune checkpoint inhibition[J]. Int J Mol Sci, 2019, 20:3934. doi:10.3390/ijms20163934. [20]Kim MJ, Sun HJ, Song YS, et al. CXCL16 positively correlated with M2-macrophage infiltration, enhanced angiogenesis, and poor prognosis in thyroid cancer[J]. Sci Rep,2019, 16;9:13288. doi: 10.1038/s41598-019-49613-z. [21]Croce L, Coperchini F, Magri F, et al. The multifaceted anti-cancer effects of BRAF-inhibitors[J]. Oncotarget, 2019, 10:6623-6640. [22]Mario R, Francesca C, Francesco L, et al. Role of chemokines in thyroid cancer microenvironment:is CXCL8 the main player?[J]. Front Endocrinol(Lausanne), 2018, 9:314. doi: 10.3389/fendo.2018.00314. [23]Bauerle KT, Schweppe RE, Lund G, et al. Nuclear factor κB-dependent regulation of angiogenesis, and metastasis in an in vivo model of thyroid cancer is associated with secreted interleukin-8.[J]. J Clin Endocrinol Metab, 2014,99:E1436-1444. [24]Zheng R, Chen G, Li X, et al. Effect of IL-6 on proliferation of human thyroid anaplastic cancer stem cells[J]. Int J Clin Exp Pathol, 2019, 12:3992-4001. |