[1]Vousden KH, Prives C. Blinded by the light: the growing complexity of p53[J]. Cell, 2009, 137: 413-431. [2]Lane DP. Cancer. p53, guardian of the genome[J]. Nature, 1992, 358: 15-16.[3]Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use[J]. Cold Spring Harb Perspect Biol, 2010, 2: a001008. doi: 10.1101/cshperspect.a001008. [4]谌芳, 吴意, 林雪迟. P53功能的多效性[J]. 基础医学与临床, 2015, 35: 1672-1676. [5]Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian[J]. J Mol Cell Biol, 2019, 11: 564-577. [6]Wen J, Wang D. Deciphering the PTM codes of the tumor suppressor p53[J]. J Mol Cell Biol. 2021, mjab047. doi: 10.1093/jmcb/mjab047. [7]Reed SM, Quelle DE. p53 acetylation: regulation and consequences[J]. Cancers (Basel), 2014, 7: 30-69. [8]Krummel KA, Lee CJ, Toledo F, et al. The C-terminal lysines fine-tune p53 stress responses in a mouse model but are not required for stability control or transactivation[J]. Proc Natl Acad Sci U S A, 2005, 10: 10188-10193. [9]Wang D, Kon N, Lasso G, et al. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode[J]. Nature, 2016, 538: 118-122. [10]Kon N, Churchill M, Li H, et al. Robust p53 stabilization is dispensable for its activation and tumor suppressor function[J]. Cancer Res, 2021, 81: 935-944. [11]Tsai FY, Orkin SH. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation[J]. Blood, 1997, 89: 3636-3643. [12]Yaguchi T, Nakano T, Gotoh A, et al. Adenosine promotes GATA-2-regulated p53 gene transcription to induce HepG2 cell apoptosis[J]. Cell Physiol Biochem, 2011, 28: 761-770. [13]Brady OA, Jeong E, Martina JA, et al. The transcription factors TFE3 and TFEB amplify p53 dependent transcriptional programs in response to DNA damage[J]. Elife, 2018, 7: e40856. doi: 10.7554/eLife.40856. |