GABA受体调节剂在阿尔茨海默病治疗上的研究进展

袁冬, 张云帆, 罗妙玲, 陈壮飞, 付玉

中国药学杂志 ›› 2022, Vol. 57 ›› Issue (21) : 1810-1816.

PDF(961 KB)
PDF(961 KB)
中国药学杂志 ›› 2022, Vol. 57 ›› Issue (21) : 1810-1816. DOI: 10.11669/cpj.2022.21.006
综述

GABA受体调节剂在阿尔茨海默病治疗上的研究进展

  • 袁冬, 张云帆, 罗妙玲, 陈壮飞, 付玉*
作者信息 +

Research Progress in GABA Receptor Regulators in Alzheimer′s Disease

  • YUAN Dong, ZHANG Yun-fan, LUO Miao-ling, CHEN Zhuang-fei, FU Yu*
Author information +
文章历史 +

摘要

阿尔茨海默病(Alzheimer′s disease, AD)是一种在老年人中发病率极高的神经退行性疾病,因其病因复杂,目前缺乏有效的治疗方法。AD往往伴随着神经递质水平的异常,伽马氨基丁酸(γ-aminobutyric acid,GABA)是大脑内主要的抑制性神经递质,对神经活动有重要影响。研究发现,给予GABA受体调节剂可改善AD脑内的兴奋和抑制(excitement/inhibition, E/I)平衡,为AD提供了1个早期治疗靶点。本文综述了GABAA、GABAB和GABAC受体调节剂在AD上的作用效果。研究总体揭示GABA受体调节剂在低剂量下能够改善AD症状。

Abstract

Alzheimer′s disease (AD) is a neurodegenerative disease with a high incidence in the elderly. There is currently no effective treatment for patients with AD disease. AD patients often have abnormal neurotransmitter levels. γ-Aminobutyric acid (GABA) is the brain′s inhibitory neurotransmitter and significantly affects neuronal excitability. In addition, using GABA receptor regulators improved the balance of excitation/inhibition (E/I) in the AD brain, providing an early therapeutic target for AD. This paper reviews the effects of GABAA, GABAB, and GABAC receptor regulators on AD. GABA receptor regulators can rescue AD symptoms at a low dose.

关键词

阿尔茨海默病 / γ-氨基丁酸 / 激动剂 / 拮抗剂

Key words

Alzheimer′s disease / γ-aminobutyric acid / agonist / antagonist

引用本文

导出引用
袁冬, 张云帆, 罗妙玲, 陈壮飞, 付玉. GABA受体调节剂在阿尔茨海默病治疗上的研究进展[J]. 中国药学杂志, 2022, 57(21): 1810-1816 https://doi.org/10.11669/cpj.2022.21.006
YUAN Dong, ZHANG Yun-fan, LUO Miao-ling, CHEN Zhuang-fei, FU Yu. Research Progress in GABA Receptor Regulators in Alzheimer′s Disease[J]. Chinese Pharmaceutical Journal, 2022, 57(21): 1810-1816 https://doi.org/10.11669/cpj.2022.21.006
中图分类号: R971   

参考文献

[1] SENGOKU R. Aging and Alzheimer′s disease pathology. Neuropathology, 2020, 40(1):22-29.
[2] LIU H, ZHANG Z H, BAO X Q, et al. Molecular mechanisms of mitochondrial dynamics and mitophagy and their roles in neurodegenerative diseases. Chin Pharm J(中国药学杂志), 2020, 55(5):337-341.
[3] WANG R, FANG F. Research progress of the role of autophagy in Alzheimer′s disease and drug intervention. Chin Pharm J(中国药学杂志), 2015, 50(5):381-385.
[4] ZHANG W, XIONG B R, ZHANG L Q, et al. The role of the GABAergic system in diseases of the central nervous system. Neuroscience, 2021, 470:88-99. Doi: 10.1016/j.neuroscience.2021.06.037.
[5] LU M H, ZHAO X Y, XU D E, et al. Transplantation of GABAergic interneuron progenitor attenuates cognitive deficits of Alzheimer′s disease model mice. J Alzheimers Dis, 2020, 75(1):245-260.
[6] FU Y, LI L, WANG Y, et al. Role of GABAA receptors in EEG activity and spatial recognition memory in aged APP and PS1 double transgenic mice. Neurochem Int, 2019, 131:104542. Doi: 10.1016/j.neuint.2019.104542.
[7] TANG Y, HAN Y, YU H, et al. Increased GABAergic development in iPSC-derived neurons from patients with sporadic Alzheimer′s disease. Neurosci Lett, 2020, 735:135208. Doi: 10.1016/j.neulet.2020.135208.
[8] MAESTU F, DE HAAN W, BUSCHE M A, et al. Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology. Ageing Res Rev, 2021, 69:101372. Doi: 10.1016/j.arr.2021.101372.
[9] ASINOF S K, PAINE T A. Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task. Neuropharmacology, 2013, 65:39-47. Doi: 10.1016/j.neuropharm. 2012. 09. 009.
[10] MASSONE S, VASSALLO I, FIORINO G, et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis, 2011, 41(2):308-317.
[11] AMBRAD GIOVANNETTI E, FUHRMANN M. Unsupervised excitation: GABAergic dysfunctions in Alzheimer′s disease. Brain Res, 2019, 1707:216-226. Doi: 10.1016/j.brainres.2018.11.042.
[12] BI D, WEN L, WU Z, et al. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer′s disease. Alzheimers Dement, 2020, 16(9):1312-1329.
[13] HEANEY C F, KINNEY J W. Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev, 2016, 63:1-28. Doi: 10.1016/j.neubiorev.2016.01.007.
[14] CHEN Z, LIU R, YANG S H, et al. Methylene blue inhibits GABAA receptors by interaction with GABA binding site. Neuropharmacology, 2017, 119:100-110. Doi: 10.1016/j.neuropharm.2017.04.002.
[15] GOVINDPANI K, CALVO-FLORES GUZMAN B, VINNAKOTA C, et al. Towards a better understanding of GABAergic remodeling in Alzheimer′s disease. Int J Mol Sci, 2017, 18(8):1813. Doi: 10.3390/ijms18081813.
[16] BELELLI D, HALES T G, LAMBERT J J, et al. GABAA receptors in GtoPdb v.2021.3. Iuphar Bps Guide Pharmacol Cite, 2021, 2021(3). Doi: 10.2218/gtopdb/F72/2021.3.
[17] GEORGE K, SADIQ N M. GABA Inhibitors . Florida: StatPearls. Treasure Island (FL), 2022.
[18] JANKOVIC S M, DJESEVIC M, JANKOVIC S V. Experimental GABA A receptor agonists and allosteric modulators for the treatment of focal epilepsy. J Exp Pharmacol, 2021, 13:235-244.
[19] BHAGAT K, SINGH J V, PAGARE P P, et al. Rational approaches for the design of various GABA modulators and their clinical progression. Mol Divers, 2021, 25(1):551-601.
[20] SHARMA K, PRADHAN S, DUFFY L K, et al. Role of receptors in relation to plaques and tangles in Alzheimer′s disease pathology. Int J Mol Sci, 2021, 22(23). Doi: 10.3390/ijms222312987.
[21] KWAKOWSKY A, WALDVOGEL H J, FAULL R L M. Therapeutic potential of alpha 5 subunit containing GABAA receptors in Alzheimer′s disease. Neural Regen Res, 2021, 16(8):1550-1551.
[22] NAVA-MESA M O, JIMENEZ-DIAZ L, YAJEYA J, et al. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer′s disease. Front Cell Neurosci, 2014, 8:167. Doi: 10.3389/fncel.2014.00167.
[23] YOSHIIKE Y, KIMURA T, YAMASHITA S,et al. GABA(A) receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS One, 2008, 3(8):e3029. Doi: 10.1371/journal.pone.0003029.
[24] AVOLIO E, MAHATA S K, MANTUANO E, et al. Antihypertensive and neuroprotective effects of catestatin in spontaneously hypertensive rats: interaction with GABAergic transmission in amygdala and brainstem. Neuroscience, 2014, 270:48-57.
[25] HU B, GENG C, GUO F, et al. GABAA receptor agonist muscimol rescues inhibitory microcircuit defects in the olfactory bulb and improves olfactory function in APP/PS1 transgenic mice. Neurobiol Aging, 2021, 108:47-57. Doi: 10.1016/j.neurobiolaging.2021.08.003.
[26] CASTELLANO C, MCGAUGH J L. Effects of post-training bicuculline and muscimol on retention: lack of state dependency. Behav Neural Biol, 1990, 54(2):156-164.
[27] PILIPENKO V, NARBUTE K, BEITNERE U, et al. Very low doses of muscimol and baclofen ameliorate cognitive deficits and regulate protein expression in the brain of a rat model of streptozocin-induced Alzheimer′s disease. Eur J Pharmacol, 2018, 818:381-399.
[28] PILIPENKO V, NARBUTE K, PUPURE J, et al. Neuroprotective action of diazepam at very low and moderate doses in Alzheimer′s disease model rats. Neuropharmacology, 2019, 144:319-326.
[29] PETRACHE A L, RAJULAWALLA A, SHI A, et al. Aberrant excitatory-inhibitory synaptic mechanisms in entorhinal cortex microcircuits during the pathogenesis of Alzheimer′s disease. Cereb Cortex, 2019, 29(4):1834-1850.
[30] SHAO H, ZHANG Y, DONG Y, et al. Chronic treatment with anesthetic propofol improves cognitive function and attenuates caspase activation in both aged and Alzheimer′s disease transgenic mice. J Alzheimers Dis, 2014, 41(2):499-513.
[31] MOHR E, BRUNO G, FOSTER N, et al. GABA-agonist therapy for Alzheimer′s disease. Clin Neuropharmacol, 1986, 9(3):257-263.
[32] CHEN C Y, DI LUCENTE J, LIN Y C, et al. Defective GABAergic neurotransmission in the nucleus tractus solitarius in Mecp2-null mice, a model of Rett syndrome. Neurobiol Dis, 2018, 109(Pt A):25-32.
[33] LIND B L, JESSEN S B, LONSTRUP M, et al. Fast Ca(2+) responses in astrocyte end-feet and neurovascular coupling in mice. Glia, 2018, 66(2):348-358.
[34] LI Y, ZHU K, LI N, et al. Reversible GABAergic dysfunction involved in hippocampal hyperactivity predicts early-stage Alzheimer disease in a mouse model. Alzheimers Res Ther, 2021, 13(1):114.
[35] JOHNSTON G A. Advantages of an antagonist: bicuculline and other GABA antagonists. Br J Pharmacol, 2013, 169(2):328-336.
[36] YANOVSKY Y, SCHUBRING S R, YAO Q, et al. Waking action of ursodeoxycholic acid (UDCA) involves histamine and GABAA receptor block. PLoS One, 2012, 7(8):e42512. Doi: 10.1371/journal.pone.0042512.
[37] MATSUYAMA S, TANIGUCHI T, KADOYAMA K, et al. Long-term potentiation-like facilitation through GABAA receptor blockade in the mouse dentate gyrus in vivo. Neuroreport, 2008, 19(18):1809-1813.
[38] DE WILDE M C, OVERK C R, SIJBEN J W, et al. Meta-analysis of synaptic pathology in Alzheimer′s disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement, 2016, 12(6):633-644.
[39] KADOYAMA K, MATSUURA K, TAKANO M, et al. Proteomic analysis involved with synaptic plasticity improvement by GABAA receptor blockade in hippocampus of a mouse model of Alzheimer′s disease. Neurosci Res, 2021, 165:61-68. Doi: 10.1016/j.neures.2020.04.004.
[40] KAZIM S F, CHUANG S C, ZHAO W, et al. Early-onset network hyperexcitability in presymptomatic Alzheimer′s disease transgenic mice is suppressed by passive immunization with anti-human APP/Abeta antibody and by mGluR5 blockade. Front Aging Neurosci, 2017, 9:71. Doi: 10.3389/fnagi.2017.00071.
[41] LANDFIELD P W, BASKIN R K, PITLER T A. Brain aging correlates: retardation by hormonal-pharmacological treatments. Science, 1981, 214(4520):581-584.
[42] BEZZINA C, VERRET L, HALLEY H, et al. Environmental enrichment does not influence hypersynchronous network activity in the Tg2576 mouse model of Alzheimer′s disease. Front Aging Neurosci, 2015, 7:178. Doi: 10.3389/fnagi.2015.00178.
[43] KUMAR K, KAUR H, DESHMUKH R. Neuroprotective role of GABAB receptor modulation against streptozotocin-induced behavioral and biochemical abnormalities in rats. Neuroscience, 2017, 357:67-74. Doi: 10.1016/j.neuroscience.2017.05.054.
[44] SUN Z, SUN L, TU L. GABAB receptor-mediated PI3K/Akt signaling pathway alleviates oxidative stress and neuronal cell injury in a rat model of Alzheimer′s disease. J Alzheimers Dis, 2020, 76(4):1513-1526.
[45] FU Y, CUI J, MA Y. Differential effects of aging on EEG after baclofen administration. Sci China Life Sci, 2011, 54(5):459-465.
[46] CASTELLANO C, BRIONI J D, NAGAHARA A H, et al. Post-training systemic and intra-amygdala administration of the GABA-B agonist baclofen impairs retention. Behav Neural Biol, 1989, 52(2):170-179.
[47] KREIS A, DESLOOVERE J, SUELVES N, et al. Overexpression of wild-type human amyloid precursor protein alters GABAergic transmission. Sci Rep, 2021, 11(1):17600. Doi: 10.1038/s41598-021-97144-3.
[48] FROESTL W, GALLAGHER M, JENKINS H, et al. SGS742: the first GABA(B) receptor antagonist in clinical trials. Biochem Pharmacol, 2004, 68(8):1479-1487.
[49] ALMASI A, ZAREI M, RAOUFI S, et al. Influence of hippocampal GABAB receptor inhibition on memory in rats with acute beta-amyloid toxicity. Metab Brain Dis, 2018, 33(6):1859-1867.
[50] CHEN M, CHEN Y, HUO Q, et al. Enhancing GABAergic signaling ameliorates aberrant gamma oscillations of olfactory bulb in AD mouse models. Mol Neurodegener, 2021, 16(1):14. Doi: 10.1186/s13024-021-00434-7.
[51] LASARGE C L, BANUELOS C, MAYSE J D, et al. Blockade of GABA(B) receptors completely reverses age-related learning impairment. Neuroscience, 2009, 164(3):941-947.
[52] JENSEN R J. Blocking GABA(C) receptors increases light responsiveness of retinal ganglion cells in a rat model of retinitis pigmentosa. Exp Eye Res, 2012, 105:21-26. Doi: 10.1016/j.exer.2012.10.005.
[53] CUNHA C, MONFILS M H, LEDOUX J E. GABA(C) Receptors in the lateral amygdala: a possible novel target for the treatment of fear and anxiety disorders?. Front Behav Neurosci, 2010, 4:6. Doi: 10.3389/neuro.08.006.2010.
[54] GIBBS M E, JOHNSTON G A. Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks. Neuroscience, 2005, 131(3):567-576.
[55] ARNAUD C, GAUTHIER P, GOTTESMANN C. Study of a GABAC receptor antagonist on sleep-waking behavior in rats. Psychopharmacology (Berl), 2001, 154(4):415-419.
[56] SAMAKASHVILI S, IBANEZ C, SIMO C, et al. Analysis of chiral amino acids in cerebrospinal fluid samples linked to different stages of Alzheimer disease. Electrophoresis, 2011, 32(19):2757-2764.
[57] LANCTOT K L, HERRMANN N, MAZZOTTA P, et al. GABAergic function in Alzheimer′s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can J Psychiatry, 2004, 49(7):439-453.
[58] LIMON A, REYES-RUIZ J M, MILEDI R. Loss of functional GABA(A) receptors in the Alzheimer diseased brain. Proc Natl Acad Sci USA, 2012, 109(25):10071-10076.
[59] KAWASAKI K, EIGYO M, IKEDA M, et al. A novel benzodiazepine inverse agonist, S-8510, as a cognitive enhancer. Prog Neuropsychopharmacol Biol Psychiatry, 1996, 20(8):1413-1425.
[60] AHTIAINEN A, GENOCCHI B, TANSKANEN J M A, et al. Astrocytes exhibit a protective role in neuronal firing patterns under chemically induced seizures in neuron-astrocyte co-cultures. Int J Mol Sci, 2021, 22(23). Doi: 10.3390/ijms222312770.
[61] YOON J K, KIM J, SHAH Z, et al. Advanced human BBB-on-a-chip: a new platform for Alzheimer′s disease studies. Adv Healthc Mater, 2021, 10(15):e2002285. Doi: 10.1002/adhm.202002285.

基金

国家自然科学基金项目资助(81760258,81560221);云南省“万人计划”青年拔尖人才专项资助(YNWR-QNBJ-2018-056)
PDF(961 KB)

Accesses

Citation

Detail

段落导航
相关文章

/