Therapeutic Potential of Targeting Histone Demethylases JMJD3 for Cancer Treatment
DU Jian-bo1, WANG Yu-min2
1. Department of General Surgery, The Affiliated Hospital of Chifeng University, Chifeng 024000, China; 2. Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
Abstract:The Jumonji domain containing-3 (JMJD3), also known as lysine demethylase 6B (KDM6B), belongs to the KDM6 family of histone H3 lysine 27 (H3K27) demethylases, which also includes UTX(KDM6A) and JMJD3 (KDM6B). Previous studies have shown that dysregulation of JMJD3 is closely linked to tumorigenesis in various cancers. Accumulating evidence suggested that there is remarkable therapeutic potential for targeting JMJD3 in different types of cancer. Herein, we are gaved a brief review on the functional roles of JMJD3 in cancers,examined how JMJD3 regulates cancer cells,and evaluated the available compounds and agents targeting JMJD3.
杜建波, 王玉敏. 靶向调控组蛋白去甲基化酶JMJD3与肿瘤治疗[J]. 中国药学杂志, 2022, 57(4): 258-263.
DU Jian-bo, WANG Yu-min. Therapeutic Potential of Targeting Histone Demethylases JMJD3 for Cancer Treatment. Chinese Pharmaceutical Journal, 2022, 57(4): 258-263.
PARK J W, HAN J W. Targeting epigenetics for cancer therapy [J]. Arch Pharm Res, 2019, 42 (2):159-170.
[2]
PARK S Y, PARK J W, CHUN Y S. Jumonji histone demethylases as emerging therapeutic targets [J]. Pharmacol Res, 2016, 105(3):146-151.
[3]
BHOL C S, PANIGRAHI D P, PRAHARAJ P P, et al. Epigenetic modifications of autophagy in cancer and cancer therapeutics [J]. Semin Cancer Biol, 2020, 66(11):22-23.
[4]
WALDMANN T, SCHNEIDER R. Targeting histone modifications--epigenetics in cancer [J]. Curr Opin Cell Biol, 2013, 25 (2): 184-189.
[5]
ROTILI D, MAI A. Targeting histone demethylases: a new avenue for the fight against cancer [J]. Genes Cancer, 2011, 2 (6): 663-679.
[6]
JANARDHAN A, KATHERA C, DARSI A, et al. Prominent role of histone lysine demethylases in cancer epigenetics and therapy [J]. Oncotarget, 2018, 9 (76): 34429-34448.
[7]
KOOISTRA S M, HELIN K. Molecular mechanisms and potential functions of histone demethylases [J]. Nat Rev Mol Cell Biol, 2012, 13 (5): 297-311.
[8]
SHI Y, LAN F, MATSON C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 [J]. Cell, 2004, 119 (7): 941-953.
[9]
KLOSE R J, KALLIN E M, ZHANG Y. JmjC-domain-containing proteins and histone demethylation [J]. Nat Rev Genet, 2006, 7 (9): 715-727.
[10]
TSUKADA Y, FANG J, ERDJUMENT-BROMAGE H, et al. Histone demethylation by a family of JmjC domain-containing proteins [J]. Nature, 2006, 439 (7078): 811-816.
[11]
HONG S, CHO Y W, YU L R, et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases [J]. Proc Natl Acad Sci USA, 2007, 104 (47): 18439-18444.
[12]
KRUIDENIER L, CHUNG C W, CHENG Z, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response [J]. Nature, 2012, 488 (7411): 404-408.
[13]
SALMINEN A, KAARNIRANTA K, HILTUNEN M, et al. Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process [J]. J Mol Med, 2014, 92 (10): 1035-1043.
[14]
PERRIGUE P M, NAJBAUER J, BARCISZEWSKI J. Histone demethylase JMJD3 at the intersection of cellular senescence and cancer [J]. Biochim Biophys Acta, 2016, 1865 (2): 237-244.
[15]
ZHANG X, LIU L, YUAN X, et al. JMJD3 in the regulation of human diseases [J]. Protein Cell, 2019, 10 (12): 864-882.
[16]
TANG B, QI G, TANG F, et al. Aberrant JMJD3 expression upregulates slug to promote migration, invasion, and stem cell-like behaviors in hepatocellular carcinoma [J]. Cancer Res, 2016, 76 (22): 6520-6532.
[17]
ANDERTON J A, BOSE S, VOCKERODT M, et al. The H3K27me3 demethylase, KDM6B, is induced by Epstein-Barr virus and over-expressed in Hodgkin's Lymphoma [J]. Oncogene, 2011, 30 (17): 2037-2043.
[18]
GUO X, ZHANG Y, ZHANG Q, et al. The regulatory role of nickel on H3K27 demethylase JMJD3 in kidney cancer cells [J]. Toxicol Ind Health, 2016, 32 (7): 1286-1292.
[19]
HASHIZUME R, ANDOR N, IHARA Y, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma [J]. Nat Med, 2014, 20 (12): 1394-1396.
[20]
LOCHMANN T L, POWELL K M, HAM J, et al. Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma [J]. Sci Transl Med, 2018, 10 (441) eaao 4680.doi:10.1126/scitranslmed.aao4680.
[21]
SUI A, XU Y, PAN B, et al. Histone demethylase KDM6B regulates 1,25-dihydroxyvitamin D3-induced senescence in glioma cells [J]. J Cell Physiol, 2019, 234 (10): 17990-17998.
[22]
LI Q, HOU L, DING G, et al. KDM6B induces epithelial-mesenchymal transition and enhances clear cell renal cell carcinoma metastasis through the activation of SLUG [J]. Int J Clin Exp Pathol, 2015, 8 (6): 6334-6344.
[23]
SHEN Y, GUO X, WANG Y, et al. Expression and significance of histone H3K27 demethylases in renal cell carcinoma [J]. BMC Cancer, 2012, 12: 470. doi:10.1186/1471-2407-12-470.
[24]
WANG J, LIU L, LONG Q, et al. Decreased expression of JMJD3 predicts poor prognosis of patients with clear cell renal cell carcinoma [J]. Oncol Lett, 2017, 14 (2): 1550-1560.
[25]
NTZIACHRISTOS P, TSIRIGOS A, WELSTEAD G G, et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia [J]. Nature, 2014, 514 (7523): 513-517.
[26]
TOTTONE L, ZHDANOVSKAYA N, CARMONA P Á, et al. Histone modifications drive aberrant notch3 expression/activity and growth in T-ALL [J]. Front Oncol, 2019, 9: 198. doi:10.3389/fonc.2019.00198.
[27]
JIN Q, MARTINEZ C A, ARCIPOWSKI K M, et al. USP7 Cooperates with NOTCH1 to drive the oncogenic transcriptional program in t-cell leukemia [J]. Clin Cancer Res, 2019, 25 (1): 222-239.
[28]
PARK W Y, HONG B J, LEE J, et al. H3K27 Demethylase JMJD3 employs the NF-κB and BMP signaling pathways to modulate the tumor microenvironment and promote melanoma progression and metastasis [J]. Cancer Res, 2016, 76 (1): 161-170.
[29]
PAN M, REID M A, LOWMAN X H, et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone?demethylation [J]. Nat Cell Biol, 2016, 18 (10): 1090-1101.
[30]
PERRIGUE P M, SILVA M E, WARDEN C D, et al. The histone demethylase jumonji coordinates cellular senescence including secretion of neural stem cell-attracting cytokines [J]. Mol Cancer Res, 2015, 13 (4): 636-650.
[31]
WANG W, LIM K G, FENG M, et al. KDM6B Counteracts EZH2-mediated suppression of IGFBP5 to confer resistance to PI3K/AKT inhibitor treatment in breast cancer [J]. Mol Cancer Ther, 2018, 17 (9): 1973-1983.
[32]
RAMADOSS S, CHEN X, WANG C Y. Histone demethylase KDM6B promotes epithelial-mesenchymal transition [J]. J Biol Chem, 2012, 287 (53): 44508-44517.
[33]
TIAN C, DENG H, TANG X, et al. Effect of Jumonji domain-containing protein-3 on the proliferation and migration of lung cancer cell line [J]. J Bio Med Eng, 2012, 29 (3): 514-518.
[34]
WEI Y, CHEN R, DIMICOLI S, et al. Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells [J]. Leukemia, 2013, 27 (11): 2177-2186.
[35]
XIANG Y, ZHU Z, HAN G, et al. JMJD3 is a histone H3K27 demethylase [J]. Cell Res, 2007, 17 (10): 850-857.
[36]
DAURES M, IDRISSOU M, JUDES G, et al. A new metabolic gene signature in prostate cancer regulated by JMJD3 and EZH2 [J]. Oncotarget, 2018, 9 (34): 23413-23425.
[37]
IDRISSOU M, DAURES M, JEMIA A B, et al. EZH2 Histone methyltransferase and JMJD3 histone demethylase implications in Prostate Cancer [J]. OMICS, 2017, 21 (12): 751-753.
[38]
MOROZOV V M, LI Y, CLOWERS M M, et al. Inhibitor of H3K27 demethylase JMJD3/UTX GSK-J4 is a potential therapeutic option for castration resistant prostate cancer [J]. Oncotarget, 2017, 8 (37): 62131-62142.
[39]
LIANG S, YAO Q, WEI D, et al. KDM6B promotes ovarian cancer cell migration and invasion by induced transforming growth factor-β1 expression [J]. J Cell Biochem, 2019, 120 (1): 493-506.
[40]
PINTON G, NILSSON S, MORO L. Targeting estrogen receptor beta (ERβ) for treatment of ovarian cancer: importance of KDM6B and SIRT1 for ERβ expression and functionality [J]. Oncogenesis, 2018, 7 (2): 15. doi:10.1038/s41389-018-0027-9.
[41]
XU Z, XIA Y, XIAO Z, et al. Comprehensive profiling of JMJD3 in gastric cancer and its influence on patient survival [J]. Sci Rep, 2019, 9 (1): 868. doi:10.1038/s41598-018-37340-w.
[42]
LEE S W, PARK D Y, KIM M Y, et al. Synergistic triad epistasis of epigenetic H3K27me modifier genes, EZH2, KDM6A, and KDM6B, in gastric cancer susceptibility [J]. Gastric Cancer, 2019, 22 (3): 640-644.
[43]
MATHUR R, SEHGAL L, HAVRANEK O, et al. Inhibition of demethylase KDM6B sensitizes diffuse large B-cell lymphoma to chemotherapeutic drugs [J]. Haematologica, 2017, 102 (2): 373-380.
[44]
ZHANG Y, SHEN L, STUPACK D G, et al. JMJD3 promotes survival of diffuse large B-cell lymphoma subtypes via distinct mechanisms [J]. Oncotarget, 2016, 7 (20): 29387-29399.
[45]
LI Y, ZHANG M, SHENG M, et al. Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia [J]. J Cancer Res Clin Oncol, 2018, 144 (6): 1065-1077.
[46]
NAGARSHETH N, PENG D, KRYCZEK I, et al. PRC2 Epigenetically silences Th1-Type chemokines to suppress effector t-cell trafficking in colon cancer [J]. Cancer Res, 2016, 76 (2): 275-282.
[47]
LI S H, LU H I, CHEN Y H, et al. JMJD3 expression is an independent prognosticator in patients with esophageal squamous cell carcinoma [J]. Surgery, 2019, 165 (5): 946-952.
[48]
SUI A, XU Y, YANG J, et al. The histone H3 Lys 27 demethylase KDM6B promotes migration and invasion of glioma cells partly by regulating the expression of SNAI1 [J]. Neurochem Int, 2019, 124(3): 123-129.
[49]
BUNT J, HASSELT N A, ZWIJNENBURG D A, et al. OTX2 sustains a bivalent-like state of OTX2-bound promoters in medulloblastoma by maintaining their H3K27me3 levels [J]. Acta Neuropathol, 2013, 125 (3): 385-394.
[50]
HONG Z, LI H, LI L, et al. Different expression patterns of histone H3K27 demethylases in renal cell carcinoma and bladder cancer [J]. Cancer Biomark, 2017, 18 (2): 125-131.
[51]
MCLAUGHLIN-DRUBIN M E, PARK D, MUNGER K. Tumor suppressor p16INK4A is necessary for survival of cervical carcinoma cell lines [J]. Proc Natl Acad Sci USA, 2013, 110 (40): 16175-16180.
[52]
MCLAUGHLIN-DRUBIN M E, CRUM C P, MüNGER K. Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming [J]. Proc Natl Acad Sci USA, 2011, 108 (5): 2130-2135.
[53]
OHGUCHI H, HARADA T, SAGAWA M, et al. KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival [J]. Leukemia, 2017, 31 (12): 2661-2669.
[54]
CREGAN S, BRESLIN M, ROCHE G, et al. Kdm6a and Kdm6b: Altered expression in malignant pleural mesothelioma [J]. Int J Oncol, 2017, 50 (3): 1044-1052.
[55]
WENDT M K, TIAN M, SCHIEMANN W P. Deconstructing the mechanisms and consequences of TGF-β-induced EMT during cancer progression [J]. Cell Tissue Res, 2012, 347 (1): 85-101.
[56]
DAVID C J, MASSAGUé J. Contextual determinants of TGFβ action in development, immunity and cancer [J]. Nat Rev Mol Cell Biol, 2018, 19 (7): 419-435.
[57]
ROSSETTO C C, PARI G. KSHV PAN RNA associates with demethylases UTX and JMJD3 to activate lytic replication through a physical interaction with the virus genome [J]. PLoS Pathog, 2012, 8 (5): e1002680. doi:10.1371/journal.ppat.1002680.
[58]
VALLA K, FLOWERS C R, KOFF J L. Targeting the B cell receptor pathway in non-Hodgkin lymphoma [J]. Expert Opin Investig Drugs, 2018, 27 (6): 513-522.
[59]
REJLOVA K, MUSILOVA A, KRAMARZOVA K S, et al. Low HOX gene expression in PML-RARα-positive leukemia results from suppressed histone demethylation [J]. Epigenetics, 2018, 13 (1): 73-84.
[60]
LULLA R R, SARATSIS A M, HASHIZUME R. Mutations in chromatin machinery and pediatric high-grade glioma [J]. Sci Adv, 2016, 2 (3): e1501354. doi:10.1126/sciadv.1501354.
[61]
ROHATGI N, ZOU W, COLLINS P L, et al. ASXL1 impairs osteoclast formation by epigenetic regulation of NFATc1 [J]. Blood Adv, 2018, 2 (19): 2467-2477.
[62]
HØJFELDT J W, AGGER K, HELIN K. Histone lysine demethylases as targets for anticancer therapy [J]. Nat Rev Drug Discov, 2013, 12 (12): 917-930.
[63]
MULJI A, HASLAM C, BROWN F, et al. Configuration of a high-content imaging platform for hit identification and pharmacological assessment of JMJD3 demethylase enzyme inhibitors [J]. J Biomol Screen, 2012, 17 (1): 108-120.
[64]
HEINEMANN B, NIELSEN J M, HUDLEBUSCH H R, et al. Inhibition of demethylases by GSK-J1/J4 [J]. Nature, 2014, 514 (7520): e1-2. doi:org/10.1038/nature 1389(2014).
[65]
WANG L, CHANG J, VARGHESE D, et al. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth [J]. Nat Commun, 2013, 4: 2035. doi:10.1038/ncomms3035.
[66]
YANG D, OKAMURA H, TERAMACHI J, et al. Histone demethylase Utx regulates differentiation and mineralization in osteoblasts [J]. J Cell Biochem, 2015, 116 (11): 2628-2636.
[67]
BENYOUCEF A, PALII C G, WANG C, et al. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia [J]. Genes Dev, 2016, 30 (5): 508-521.
[68]
SAKAKI H, OKADA M, KURAMOTO K, et al. GSKJ4, A selective jumonji H3K27 demethylase inhibitor, effectively targets ovarian cancer stem Cells [J]. Anticancer Res, 2015, 35 (12): 6607-6614.
[69]
CHEN J R, NUMATA K, WU S T. Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra [J]. Opt Express, 2014, 22 (21): 26055-26075.
[70]
RAMASWAMY V, REMKE M, TAYLOR M D. An epigenetic therapy for diffuse intrinsic pontine gliomas [J]. Nat Med, 2014, 20 (12): 1378-1379.
[71]
ARCIPOWSKI K M, MARTINEZ C A, NTZIACHRISTOS P. Histone demethylases in physiology and cancer: a tale of two enzymes, JMJD3 and UTX [J]. Curr Opin Genet Dev, 2016, 36(2): 59-67.
[72]
DE SANTA F, TOTARO M G, PROSPERINI E, et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing [J]. Cell, 2007, 130 (6): 1083-1094.
[73]
SUI A, XU Y, LI Y, et al. The pharmacological role of histone demethylase JMJD3 inhibitor GSK-J4 on glioma cells [J]. Oncotarget, 2017, 8 (40): 68591-68598.
[74]
YAN N, XU L, WU X, et al. GSKJ4, an H3K27me3 demethylase inhibitor, effectively suppresses the breast cancer stem cells [J]. Exp Cell Res, 2017, 359 (2): 405-414.
[75]
ZHAO K, MIAO H. Targeting metabolic/epigenetic pathways: a potential strategy for cancer therapy in diffuse intrinsic pontine gliomas [J]. Signal Transduct Target Ther, 2020, 5 (1): 226. doi:10.1038/s41392-020-00344-y.
[76]
LHUISSIER E, AURY-LANDAS J, ALLAS L, et al. Antiproliferative effect of the histone demethylase inhibitor GSK-J4 in chondrosarcomas [J]. IUBMB Life, 2019, 71 (11): 1711-1719.
[77]
HOFSTETTER C, KAMPKA J M, HUPPERTZ S, et al. Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage [J]. J Cell Sci, 2016, 129 (4): 788-803.