Protective Mechanism of Caveolin-1 Regulating Neurovascular Unit in Cerebral Ischemia Injury
XIE Qian, MA Rong, WANG Jian*, CHEN Hai, LI Hong-yan, LI Yong, REN Mi-hong
School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu 611137, China
Abstract:The latest study shows that caveolin-1 is expressed in the central nervous system, which is close to contact the occurrence and development of ischemic stroke and participants in protecting the neurovascular unit (NVU) against cerebral ischemia injuries. In addition, caveolin-1 also regulates the proliferation and the differentiation of neurons, the permeability and the function of the blood-brain barrier (BBB). Through the literature, we were found find that the caveolin-1 has high relevance to the major structure of the neurovascular unit (neuron and blood-brain barrier). Caveolin-1 holds the function of regulating neuron and blood brain barrier. What′s more, caveolin-1 can foresee the development of disease, making us find treatment early. And, many drugs can protect the brain and improve cerebral ischemia injuries through caveolin-1 and other pathways. It suggests that caveolin-1 is a potential target for remodeling neurovascular unit and treating for stroke. It is necessary to give consideration to caveolin-1 which might be an important value in the diagnosis and treatment of ischemic stroke.
LIU L P, LIU J Y, WANG Y L, et al. Substantial improvement of stroke care in China [J]. Stroke, 2018, 49(12): 3085-3091.
[2]
LO E H, DALKARA T, MOSKOWITZ M A. Mechanisms, challenges and opportunities in stroke [J]. Nat Rev Neurosci, 2003, 4(5): 399-415.
[3]
DONNAN G A, FISHER M, MACLEOD M, et al. Stroke [J]. Lancet, 2008, 371(9624): 1612-1623.
[4]
DIRNAGL U, IADECOLA C, MOSKOWITZ M A. Pathobiology of ischaemic stroke: an integrated view [J]. Trends Neurosci, 1999, 22(9): 391-397.
[5]
MUIR K W, TYRRELL P, SATTAR N, et al. Inflammation and ischaemic stroke [J]. Curr Opin Neurol, 2007, 20(3): 334-342.
[6]
LO E H, ROSENBERG G A. The neurovascular unit in health and disease introduction [J]. Stroke, 2009, 40(53):2-3.
[7]
FRICKER M, TOLKOVSKY A M, BORUTAITE V, et al. Neuronal cell death [J]. Physiol Rev, 2018, 98(2): 813-880.
[8]
ZHONG W, HUANG Q Y, ZENG L W, et al. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke [J]. Int J Med Sci, 2019, 16(11):1492-1503.
[9]
WILLIAMS T M, LISANTI M P. The caveolin proteins [J]. Gen Biol, 2004, 5(3): 214.
[10]
DINA N A, WANG H M, RICHARD D B, et al. Membrane-associated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes [J]. J Neurosci Res, 2004, 75(5): 603-613.
[11]
BAKER N, TUAN R S. The less-often-traveled surface of stem cells: caveolin-1 and caveolae in stem cells, tissue repair and regeneration [J]. Stem cell Res Ther, 2013, 4(4): 90.
[12]
BUSIJA A R, PATEL H H, INSEL P A. Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology [J]. Am J Physiol Cell Physiol, 2017, 312(4): 459-477.
[13]
SHATZ M, LISCOVITCH M. Caveolin-1: a tumor-promoting role in human cancer [J]. Int J Rad Biol, 2008, 84(3): 177-189.
[14]
WANG L, JI Z H, CHEN D D, et al. Research progress of caveolin and brain function [J]. Prog Biochem Biophys (生物化学与生物物理进展), 2007, 35(5): 449-453.
[15]
SANNAE, MIOTTIS, MAZZIM, et al. Binding of nuclear caveolin-1 to promotor elements of growth-associated genes in ovarian carcinoma cells [J]. Exp Cell Res, 2007, 313(7): 1307-1317.
[16]
ZHANG Y, ZOU W, CUI F G, et al. Protective effect of phosphatidylcholine on restoration of ethanol-injured with caveolin-1 [J]. J Mem Biol, 2014, 247(1): 73-80.
[17]
KOGO H, AIBA T, FUJIMOTO T. Cell type-specific occurrence of caveolin-1alpha and-1beta in the lung caused by expression of distinct mRNAs [J]. J Biol Chem, 2004, 279(24): 25574-25581.
[18]
LI Y, LIU L B, MA T, et al. Effect of caveolin-1 on the expression of tight junction-associated proteins in rat glioma-derived microvascular endothelial cells [J]. Int J Clin Exp Pathol, 2015, 8(10): 13067-13074.
[19]
PATRICK S, ANDRES B F, HAITHAM M, et al. The protective effects of levosimendan on ischemia/reperfusion injury and apoptosis [J]. Recent Pat Cardiovasc Drug Discov, 2011, 6(1): 21208156.
[20]
MADANAMOHAN B, LAHOUD O B, LUDWINE M, et al. Neurofibromin binds to caveolin-1 and regulates ras, FAK, and Akt [J]. Biochem Biophys Res Commun, 2006, 340(4):1200-1208.
[21]
ZHONG Y, SMART E J, WEKSLER B, et al. Caveolin-1 regulates human immunodeficiency virus-1 tat-induced alterations of tight junction protein expression via modulation of the ras signaling [J]. J Neurosci, 2008, 28(31): 7788-7796.
[22]
PANG Q Y, ZHANG H M, CHEN Z Z, et al. Role of caveolin-1/vascular endothelial growth factor pathway in basic fibroblast growth factor-induced angiogenesis and neurogenesis after treadmill training following focal cerebral ischemia in rats [J]. Brain Res, 2017, 1663: 9-19.
[23]
VAN HELMOND Z K, MINERS J S, BEDNALL E, et al. Caveolin-1 and-2 and their relationship to cerebral amyloid angiopathy in Alzheimer′s disease [J]. Neuropathol Appl Neurobiol, 2007, 33(3): 317-327.
[24]
ZHANG J, ZHU W S, XIAO L L, et al. Lower serum caveolin-1 is associated with cerebral microbleeds in patients with acute ischemic stroke [J]. Oxid Med Cell Longev, 2016, 2016: 9026787.
[25]
ZHONG Y L, ZHANG R R, HUANG S Y, et al. Relationship between serum level of caveolin-1 and early neurological deterioration in patients with acute cerebral infarction [J]. J Shanghai Jiaotong Univ (Med Sci)(上海交通大学学报医学版), 2017, 37(12): 1678-1681.
[26]
QIAN H, LI Y J. Study the role of caveolin-1 in blood cerebrospinal fluid barrier [J]. China J Mod Med(中国当代医药), 2017, 3(24): 17-23.
[27]
JIN X, SUN Y, XU J, et al. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells [J]. J Neurochem, 2015, 132(6): 724-730.
[28]
SONG H M, CHENG Y J, BI G, et al. Release of matrix metalloproteinases-2 and 9 by S-nitrosylated caveolin-1 contributes to degradation of extracellular matrix in tPA-treated hypoxic endothelial cells [J]. PLoS One, 2016, 11(2): e0149269.
[29]
FERRUCCIO G, DANIELA V, ORLANDO G, et al. Expression of caveolin-1 and-2 in differentiating PC12 cells and dorsal root ganglion neurons: caveolin-2 is up-regulated in response to cell injury [J]. Neurobiology, 1998, 95(17): 10257-10262.
[30]
BRIAN P H, YUE H U, FINLEY J C, et al. Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons [J]. J Biol Chem, 2011, 286(38): 33310-33321.
[31]
KANG M J, CHUNG Y H, HWANG C I, et al. Caveolin-1 upregulation in senescent neurons alters amyloid precursor protein processing [J]. Exp Mol Med, 2006, 38(2): 126-133.
[32]
GAUDREAULT S B, BLAIN J F, GRATTON J P, et al. A role for caveolin-1 in post-injury reactive neuronal plasticity [J]. J Neurochem, 2005, 92(4): 831-839.
[33]
EGAWA J, SCHILLING J M, CUI W, et al. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma [J]. Faseb J, 2017, 31(8): 3403-3411.
[34]
MANDYAM C D, SCHILLING J M, CUI W, et al. Neuron-targeted caveolin-1 improves molecular signaling, plasticity, and behavior dependent on the hippocampus in adult and aged mice [J]. Biol Psych, 2017, 81(2): 101-110.
[35]
EGAWA J, ZEMLJIC H A, MANDYAM C D, et al. Neuron-targeted caveolin-1 promotes ultrastructural and functional hippocampal synaptic plasticity [J]. Cereb Cortex, 2018, 28(9): 3255-3266.
[36]
LI Y, LAU W M, SO K F, et al. Caveolin-1 promote astroglial differentiation of neural stem/progenitor cells through modulating Notch1/NICD and Hes1 expressions [J]. Biochem Biophys Res Commun, 2011, 407(3): 517-524.
[37]
LI Y, LAU W M, SO K F, et al. Caveolin-1 inhibits oligodendroglial differentiation of neural stem/progenitor cells through modulating b-catenin expression [J]. Neurochem Int, 2011, 59(2):114-121.
[38]
JASMIN F, YANG M, IACOVITTI L, et al. Genetic ablation of caveolin-1 increases neural stem cell proliferation in the subventricular zone (SVZ) of the adult mouse brain [J]. Cell Cycle, 2009, 8(23): 3978-3983.
[39]
CHANG F, CHEN F, LEE S, et al. Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage [J]. Am J Pathol, 2011, 178(4): 1749-1761.
[40]
LIU Y, WANG B, WANG Y, et al. Increasing the permeability of the blood-brain barrier in three different modelsin vivo [J]. CNS Neurosci Thera, 2015, 21(7): 568-574.
[41]
XIA C Y, ZHANG Z, XUE Y X, et al. Mechanisms of the increase in the permeability of the blood-tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin [J]. J Neurooncol, 2009, 94(1): 41-50.
[42]
ZHAO H, ZHANG Q R, LU X M, et al. Effects of hyperbaric oxygen on caveolin-1 and matrix metalloproteinase-9 in brain tissues after cerebral focal ischemia-reperfusion in rats [J]. Chin J Rehabil Med (中国康复医学杂志). 2011, 26(6): 550-554.
[43]
WOODMAN S E, ASHTON A W, SCHUBERT W, et al. Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli [J]. Am J Pathol, 2003, 162(6): 2059-2068.
[44]
NAG S, VENUGOPALAN R, STEWART D J. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown [J]. Acta Neuropathol, 2007, 114(5): 459-469.
[45]
NAG S, MANIAS J L, KAPADIA A, et al. Molecular changes associated with the protective effects of angiopoietin-1 during blood-brain barrier breakdown post-injury [J]. Mol Neurobio, 2016, 54(6): 4232-4242.
[46]
CHOI K H, KIM H S, PARK M S, et al. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation [J]. Oncotarget, 2016, 7(42): 67857-67867.
[47]
GU Y, DEE C M, SHEN J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability[J]. Front Biosci, 2011, 3: 1216-1231.
[48]
YU J Y, LIU Q Q, LI X, et al. Oxymatrine improves blood-brain barrier integrity after cerebral ischemia-reperfusion injury by downregulating CAV1 and MMP9 expression [J]. Phytomedicine, 2021, 84: 153505.
[49]
LIU J, JIN X, LI K J, et al. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage [J]. J Neurosci, 2012, 32(9): 3044-3057.
[50]
GU Y, ZHENG G Q, XU M J, et al. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury [J]. J Neurochem, 2011, 120(1):147-156.
[51]
BARAKAT S, TURCOTTE S, DEMEULE M, et al. Regulation of brain endothelial cells migration and angiogenesis by P-glycoprotein/caveolin-1 interaction [J]. Biochem Biophys Res Commun, 2008, 372(3): 440-446.
[52]
JODOIN J, DEMEULE M, FENART L, et al. P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins [J]. J Neurochem, 2004, 87(4): 1010-1023.
[53]
GOTTSCHALL P E, BARONE F C. Important role for endothelial calveolin-1 in focal cerebral ischemia-induced blood-brain barrier injury [J]. J Neurochem, 2011, 120(1): 4-6.
[54]
ZHAO Y, WEI X, SONG J, et al. Peroxisome proliferator-activated receptor γ agonist rosiglitazone protects blood-brain barrier integrity following diffuse axonal injury by decreasing the levels of inflammatory mediators through a caveolin-1-dependent pathway [J]. Inflammation, 2019, 42(3): 841-856.
[55]
SHALINI G, DEVRAJ K, FENG X, et al. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation [J]. J Cerebral Blood Flow Metab, 2016, 37(7): 2471-2484.
[56]
SONG L, PACHTER J S. Monocyte chemoattractant protein-1 alters expression of tight junctionassociated proteins in brain microvascular endothelial cells [J]. Microvasc Res, 2004, 67: 78-89.
[57]
SONG L, GE S, PACHTER JS. Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells [J]. Blood, 2007, 109(4): 1515-1523.
[58]
LINKERMANN A, HACKL M J, KUNZENDORF U, et al. Necroptosis in immunity and ischemia-reperfusion injury [J]. Am J Transplant, 2013, 13(11): 2797-2804.
[59]
YONATAN S, SHELEF I, KNYAZER B, et al. Anatomy and physiology of the blood-brain barrier [J]. Sem Cell Devel Biol, 2015, 38: 2-6.
[60]
NORIFUMI SHIODA, FENG HAN, KOHJI FUKUNAGA. Chapter 26 role of Akt and Erk signaling in the neurogenesis following brain ischemia [J]. Int Rev Neurobiol, 2009, 85: 375-387.
[61]
ZHAO Y L, SONG J N, MA X D, et al. Changes of caveolin-1 expression in the hippocampus of rats after diffuse axonal injury and its relationship with activation of astroglia [J]. J Xi′an Jiaotong Univ(Med Sci)(西安交通大学学报医学版), 2014, 35(6): 747-752.
[62]
GEE C E, MANSUY I M. Protein phosphatases and their potential implications in neuroprotective processes [J]. Cell Mol Life Sci, 2005, 62(10): 1120-1130.
[63]
BI C S, DANIEL K L, CAROLINE P, et al. The oxidative stress-induced increase in the membrane expression of the water-permeable channel aquaporin-4 in astrocytes is regulated by caveolin-1 phosphorylation [J]. Front Cell Neurosci, 2017, 11: 412.
[64]
YUN J H, PARK S J, JO A, et al. Caveolin-1 is involved in reactive oxygen species-induced SHP-2 activation in astrocytes [J]. Exp Mol Med, 2011, 43(12): 660-668.
[65]
QUANTTROMANI M J, PRUVOST M, GUERREIRO C, et al. Extracellular matrix modulation is driven by experimence-dpendent plasticity during stroke recovery [J]. Mol Neurobiol, 2017, 55(3): 2196-2213.
[66]
DHUNGANNA H, HUUSKONEN M T, PIHLAJANIEMI T, et al. Lack of collagen XV is protective after ischemic stroke in mice [J]. Cell Death Dis, 2017, 8(1): e2541.
[67]
YANG S, JIN H, ZHU Y, et al. Diverse functions and mechanisms of pericytes in ischemic stroke [J]. Curr Neuropharmacol, 2017, 15(6): 892-905.
[68]
CARLSSON R, ZEN I, BARBARIGA M, et al. STAT3 precedes HIF1α transcriptional responses to oxygen and oxygen and glucose deprivation in human brain pericytes [J]. PLoS One, 2018, 13(3): e0194146.
[69]
ZHAO Y, XU P, HU S, et al. Tanshinone II A, a multiple target neuroprotectant, promotes caveolae-dependent neuronal differentiation [J]. Eur J Pharmacol, 2015, 765: 437-446.
[70]
CHEN F Q, LI Q, PAN C S, et al. Kudiezi injection® alleviates blood-brain barrier disruption after ischemia-reperfusion in rats [J]. Microcirculation, 2016, 23(6): 426-437.
[71]
FU S, GU Y, JIANG J Q, et al. Calycosin-7-O-β-d-glucoside regulates nitric oxide /caveolin-1/matrix metalloproteinases pathway and protects blood-brain barrier inte78grity in experimental cerebral ischemia-reperfusion injury [J]. J Ethnopharmacol, 2014, 155(1): 692-701.
[72]
ZHANG S, LIU H, ZHAO Z, et al. Effects of green tea polyphenols on caveolin-1 of microvessel fragments in rats with cerebral ischemia [J]. Neurol Res, 2010, 32 (9): 963-970.
[73]
LIU M, SHEN J, ZOU F, et al. Effect of ulinastatin on the permeability of the blood-brain barrier on rats with global cerebral ischemia/reperfusion injury as assessed by MRI [J]. Biomed Pharmacother, 2017, 85: 412-417.
[74]
LIU M. Effect of ulinastation on the permeability of blood-brain barrier and caveolin-1 expression on rats with global cerebral ischemia/reperfusion injury [D]. Shanghai: Fudan University, 2014.
[75]
YANG J X, ZHANG C B. Effect of caveolin-1 protein in protecting the cerebral ischemia reperfusion injury in rats by ginkolide B [J]. Systems Med(系统医学), 2017, 2(17): 5-8, 34.
[76]
LIU B Y, SONG X L, YI J, et al. Effects of estradiol on the expression of caveolin-1 and vascular endothelial growth factor after focal cerebral ischemia in ovariectomized rats [J]. Chin J Gerontol (中国老年学杂志), 2016, 36(10): 2321-2323.
[77]
PANG Q Y, ZHAO Y, CHEN X, et al. Apigenin protects the brain against ischemia/reperfusion injury via caveolin-1/VEGF in vitro and in vivo [J]. Oxid Med Cell Longev, 2018, 2018: 7017204.
[78]
ZHOU D S, LIU L J, DOU Z G, et al. Effects of huoxue-rongluo tablets on the expression of caveolin-1 in brain tissue of middle cerebral artety [J]. Hebei J Tradit Chin Med (河北中医药学报), 2016, 38(1): 80-84, 163.
[79]
YANG L R, GUO J H, CAI X Q. The effects of intranasal administration of low dose of recombinant human erythropoietin on expressions of MMP-9 and caveolin-1 in rats with acute cerebral ischemia[J]. Chin Remed Clin (中药药物与临床), 2012, 12(4): 438-440.
[80]
LI B Y, SHEN J G, CAI G X, et al. Effects of Buyang Huanwu decoction on caveolin 1 and 2 of cerebral ischemia in rats [J]. J Tradit Chin Med Univ Hunan (湖南中医药大学学报), 2008, 28(1): 22-24,28.
[81]
WANG P, LIU Y, SHANG X, et al. CRM197-induced blood-brain barrier permeability increase is mediated by upregulation of caveolin-1 protein [J]. J Mol Neurosci, 2011, 43(3): 485-492.
[82]
SOARES E S, MENDONÇA M C, IRAZUSTA S P, et al. Evidences of endocytosis via caveolae following blood-brain barrier breakdown by Phoneutria nigriventer spider venom [J]. Toxicol Lett, 2014, 229(3): 415-422.
[83]
DENG J, HUANG Q, WANG F, et al. The role of caveolin-1 in blood-brain barrier disruption induced by focused ultrasound combined with microbubbles [J]. J Mol Neurosci, 2011, 46(3): 677-687.