Abstract:As a kind of three-dimensional carbon materials, mesoporous carbon nanospheres(MCN) perform high biocompatibility, high specific surface area and controllable particle and pore size, and therefore become good carriers for delivering drugs, cell dyes, photosensitizers and so on for biomedical usage. Recently, there is a big progress on its synthetic methodologies and theranostic functions, thus showing great potential in the application of bioimaging, targeted drug delivery, controllable drug release, phototherapy, sonodynamic therapy and biocatalysis. Studies on synthetic methodologies and diagnosis and treatment of cancer based on mesoporous carbon nanospheres are reviewed to provide support for the further studies.
秦艳晖, 黄容琴. 介孔碳纳米球在肿瘤诊疗中的研究进展[J]. 中国药学杂志, 2021, 56(14): 1109-1117.
QIN Yan-hui, HUANG Rong-qin. Progress in the Diagnosis and Treatment of Cancer Based on Mesoporous Carbon Nanospheres. Chinese Pharmaceutical Journal, 2021, 56(14): 1109-1117.
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J]. Cancer J Clin, 2020, 70(1): 7-30.
[2]
RUSSELL L M, LIU C H, GRODZINSKI P. Nanomaterials innovation as an enabler for effective cancer interventions[J]. Biomaterials, 2020, 242: 119926.
[3]
DARR J A, ZHANG J, MAKWANA N M, et al. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions[J]. Chem Rev, 2017, 117(17): 11125-11238.
[4]
LIU Q, ZHAN C, KOHANE D S. Phototriggered drug delivery using inorganic nanomaterials[J]. Bioconjug Chem, 2017, 28(1): 98-104.
[5]
ZHAO X, BIAN F K, SUN L Y, et al. Microfluidic generation of nanomaterials for biomedical applications[J]. Small, 2020, 16(9):1901943.
[6]
FU A, WANG C, PEI F, et al. Recent advances in hollow porous carbon materials for lithium-sulfur batteries[J]. Small, 2019, 15(10):1804786.
[7]
LIU J, WICKRAMARATNE N P, QIAO S Z, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nat Mater, 2015, 14(8): 763-774.
[8]
CHEN Y, SHI J. Mesoporous carbon biomaterials[J]. Sci China Mater(中国科学材料), 2015, 58(3): 241-257.
[9]
EFTEKHARI A, FAN Z. Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion[J]. Mater Chem Front, 2017, 1(6): 1001-1027.
[10]
BENZIGAR M R, TALAPANENI S N, JOSEPH S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chem Soc Rev, 2018, 47(8): 2680-2721.
[11]
XIE Y, KOCAEFE D, CHEN C, et al. Review of Research on Template Methods in Preparation of Nanomaterials[J]. J Nanomater, 2016, 2016:2302595.
[12]
FANG Y, GU D, ZOU Y, et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angew Chem (Int Ed Engl), 2010, 49(43): 7987-7991.
[13]
PENG L, HUNG C T, WANG S, et al. Versatile Nanoemulsion Assembly Approach to Synthesize Functional Mesoporous Carbon Nanospheres with Tunable Pore Sizes and Architectures[J]. J Am Chem Soc, 2019, 141(17): 7073-7080.
[14]
LIU J, YANG T, WANG D-W, et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres[J]. Nat Commun, 2013, 4(1): 2798.
[15]
CHEN Y, XU P, WU M, et al. Colloidal RBC-Shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering[J]. Adv Mater, 2014, 26(25): 4294-4301.
[16]
LI C, RASHEED T, TIAN H, et al. Solution Self-assembly of an alternating copolymer toward hollow carbon nanospheres with uniform micropores[J]. ACS Macro Lett, 2019, 8(3): 331-336.
[17]
KIM T-W, CHUNG P W, SLOWING I I, et al. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells[J]. Nano Lett, 2008, 8(11): 3724-3727.
[18]
NOONAN O, ZHANG H, SONG H, et al. In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica-polymer composites for ultra-high level in-cavity adsorption[J]. J Mater Chem A, 2016, 4(23): 9063-9071.
[19]
TIAN W, ZHANG H, DUAN X, et al. Porous Carbons: Structure-Oriented Design and Versatile Applications[J]. Adv Funct Mater, 2020, 30:1909265.
[20]
LIU K, WANG J, YANG T, et al. An “in situ templating” strategy towards mesoporous carbon for high-rate supercapacitor and high-adsorption capacity on dye macromolecules[J]. Carbon, 2020, 164: 19-27.
[21]
LI C, MENG Y, WANG S, et al. Mesoporous carbon nanospheres featured fluorescent aptasensor for multiple diagnosis of cancer in Vitro and in Vivo[J]. ACS Nano, 2015, 9(12): 12096-12103.
[22]
KAPRI S, MAJEE R, BHATTACHARYYA S. Chemical modifications of porous carbon nanospheres obtained from ubiquitous precursors for targeted drug delivery and live cell imaging[J]. ACS Sustain Chem Eng, 2018, 6(7): 8503-8514.
[23]
MU Q, WANG H, GU X, et al. Biconcave carbon nanodisks for enhanced drug accumulation and chemo-photothermal tumor therapy[J]. Adv Healthcare Mater, 2019, 8(8): e1801505.
[24]
SETHI R, ANANTA J S, KARMONIK C, et al. Enhanced MRI relaxivity of Gd(3+)-based contrast agents geometrically confined within porous nanoconstructs[J]. Contrast Media Mol Imag, 2012, 7(6): 501-508.
[25]
KUANG Y, CAO Y, LIU M, et al. Geometrical confinement of gadolinium oxide nanoparticles in poly(ethylene glycol)/arginylglycylaspartic acid-modified mesoporous carbon nanospheres as an enhanced t magnetic resonance imaging contrast agent[J]. ACS Appl Mater Interfaces, 2018, 10(31): 26099-26107.
[26]
ZHANG S, QIAN X, ZHANG L, et al. Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for PH-responsive magnetic resonance imaging and on-demand drug release[J]. Nanoscale, 2015, 7(17): 7632-7643.
[27]
ZHANG Q, WANG P, LING Y, et al. Single molecular wells-dawson-like heterometallic cluster for the In Situ Functionalization of Ordered Mesoporous Carbon: A T 1-and T 2-Weighted dual-Mode magnetic resonance imaging agent and drug delivery system[J]. Adv Funct Mater, 2017, 27(11): 1605313.
[28]
ZHANG J, ZHANG J, LI W, et al. Degradable hollow mesoporous silicon/carbon nanoparticles for photoacoustic imaging-guided highly effective chemo-thermal tumor therapy in Vitro and in Vivo[J]. Theranostics, 2017, 7(12): 3007-3020.
[29]
ZHOU L, JING Y, LIU Y, et al. Mesoporous carbon nanospheres as a multifunctional carrier for cancer theranostics[J]. Theranostics, 2018, 8(3): 663-675.
[30]
QIU Y, DING D, SUN W, et al. Hollow mesoporous carbon nanospheres for imaging-guided light-activated synergistic thermo-chemotherapy[J]. Nanoscale, 2019, 11(35): 16351-16361.
[31]
FANG Y, ZHENG G, YANG J, et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery[J]. Angew Chem, 2014, 53(21): 5366-5370.
[32]
WANG H, SUN Y, YI J, et al. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy[J]. Biomaterials, 2015, 53: 117-126.
[33]
ZHANG Y, HAN L, ZHANG Y, et al. Glutathione-mediated mesoporous carbon as a drug delivery nanocarrier with carbon dots as a cap and fluorescent tracer[J]. Nanotechnology, 2016, 27(35): 355102.
[34]
WAN L, JIAO J, CUI Y, et al. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells[J]. Nanotechnology, 2016, 27(13): 135102.
[35]
WANG H, LI X, MA Z, et al. Hydrophilic mesoporous carbon nanospheres with high drug-loading efficiency for doxorubicin delivery and cancer therapy[J]. Int J Nanomed, 2016, 11: 1793-1806.
[36]
HUANG X, WU S, DU X. Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release[J]. Carbon, 2016, 101: 135-142.
[37]
MENG Y, WANG S, LI C, et al. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres[J]. Biomaterials, 2016, 100: 134-142.
[38]
ZHANG Y, HAN L, HU L L, et al. Mesoporous carbon nanoparticles capped with polyacrylic acid as drug carrier for bi-trigger continuous drug release[J]. J Mater Chem B, 2016, 4(30): 5178-5184.
[39]
WANG X, LIN Y, LI X, et al. Fluorescent carbon dot gated hollow mesoporous carbon for chemo-photothermal synergistic therapy[J]. J Colloid Interface Sci, 2017, 507: 410-420.
[40]
LI F, WANG Y, ZHANG Z, et al. A chemo/photo-co-therapeutic system for enhanced multidrug resistant cancer treatment using multifunctional mesoporous carbon nanoparticles coated with poly (curcumin-dithiodipropionic acid)[J]. Carbon, 2017, 122: 524-537.
[41]
LI X, LIU C, WANG S, et al. Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy[J]. Mater Sci Eng, 2017, 71: 594-603.
[42]
ZHANG Y, CHANG Y Q, HAN L, et al. Aptamer-anchored di-polymer shell-capped mesoporous carbon as a drug carrier for bi-trigger targeted drug delivery[J]. J Mater Chem B, 2017, 5(33): 6882-6889.
[43]
WANG S, LI C, MENG Y, et al. MemHsp70 receptor-mediated multifunctional ordered mesoporous carbon nanospheres for photoacoustic imaging-guided synergistic targeting trimodal therapy[J]. ACS Biomater Sci Eng, 2017, 3(8): 1702-1709.
[44]
YANG J, CHEN X, LI Y, et al. Zr-based MOFs shielded with phospholipid bilayers: improved biostability and cell uptake for biological applications[J]. Chem Mater, 2017, 29(10): 4580-4589.
[45]
LI X, YAN Y, LIN Y, et al. Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy[J]. J Colloid Interface Sci, 2017, 494: 159-169.
[46]
CHEN L, ZHANG H, ZHENG J, et al. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application[J]. Mater Sci Eng. C, Mater Biol Appl, 2018, 84: 21-31.
[47]
FANG J, LIU Y, CHEN Y, et al. Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy[J]. Int J Nanomed, 2018, 13: 5991-6007.
[48]
LI X, WANG X, SHA L, et al. Thermosensitive Lipid Bilayer-Coated Mesoporous Carbon Nanoparticles for Synergistic Thermochemotherapy of Tumor[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19386-19397.
[49]
CHEN Y C, CHIU W T, CHANG C, et al. Chemo-photothermal effects of doxorubicin/silica-carbon hollow spheres on liver cancer[J]. RSC Adv, 2018, 8(64): 36775-36784.
[50]
WU F, ZHANG M, LU H, et al. Triple stimuli-responsive magnetic hollow porous carbon-based nanodrug delivery system for magnetic resonance imaging-guided synergistic photothermal/chemotherapy of cancer[J]. ACS Appl Mater Interfaces, 2018, 10(26): 21939-21949.
[51]
CAI X, YAN H, LUO Y, et al. Mesoporous Carbon Nanospheres with ZnO Nanolids for Multimodal Therapy of Lung Cancer[J]. ACS Appl Bio Mater, 2018, 1(4): 1165-1173.
[52]
ZHAO Q, WANG X, YANG M, et al. Multi-stimuli responsive mesoporous carbon nano-platform gated by human serum albumin for cancer thermo-chemotherapy[J]. Colloids Surfaces B, Biointerfaces, 2019, 184: 110532.
[53]
YAO X, YANG P, JIN Z, et al. Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis[J]. Biomaterials, 2019, 197: 268-283.
[54]
CHEN L, ZHENG J, DU J, et al. Folic acid-conjugated magnetic ordered mesoporous carbon nanospheres for doxorubicin targeting delivery[J]. Mater Sci Eng C, 2019, 104: 109939.
[55]
XIE R, LIAN S, PENG H, et al. Mitochondria and Nuclei Dual-Targeted Hollow Carbon Nanospheres for Cancer Chemophotodynamic Synergistic Therapy[J]. Mol Pharm, 2019, 16(5): 2235-2248.
[56]
WANG Y, ZHANG H, XIE J, et al. Three dimensional mesoporous carbon nanospheres as carriers for chemo-photothermal therapy compared with two dimensional graphene oxide nanosheets[J]. Colloids Surfaces A: Physicochem Eng Aspec, 2020, 590: 124498.
[57]
FENG S, MAO Y, WANG X, et al. Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy[J]. J Colloid Interface Sci, 2020, 559: 51-64.
[58]
QIAN W, QIAN M, WANG Y, et al. Combination glioma therapy mediated by a dual-targeted delivery system constructed using OMCN-PEG-Pep22/DOX[J]. Small, 2018, 14(42):1801905.
[59]
DE MELO-DIOGO D, PAIS-SILVA C, DIAS D R, et al. Strategies to improve cancer photothermal therapy mediated by nanomaterials[J]. Adv Healthcare Mater, 2017, 6(10):170073.
[60]
ZHAO Q, WANG X, YAN Y, et al. The advantage of hollow mesoporous carbon as a near-infrared absorbing drug carrier in chemo-photothermal therapy compared with IR-820[J]. Eur J Pharm Sci, 2017, 99: 66-74.
[61]
WANG S, SHANG L, LI L, et al. Metal-organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy[J]. Adv Mater, 2016, 28(38): 8379-8387.
[62]
WANG H, PAN X, WANG X, et al. Degradable carbon-silica nanocomposite with immunoadjuvant property for dual-modality photothermal/photodynamic therapy[J]. ACS nano, 2020,14(3):2847-2859.
[63]
MITRAGOTRI S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications[J]. Nat Rev Drug Discov, 2005, 4(3): 255-260.
[64]
QIAN X, ZHENG Y, CHEN Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation[J]. Adv Mater, 2016, 28(37): 8097-8129.
[65]
LIN X, QIU Y, SONG L, et al. Ultrasound activation of liposomes for enhanced ultrasound imaging and synergistic gas and sonodynamic cancer therapy[J]. Nanoscale Horizons, 2019, 4(3): 747-756.
[66]
PAN X, BAI L, WANG H, et al. Metal-Organic-Framework-Derived Carbon Nanostructure Augmented Sonodynamic Cancer Therapy[J]. Adv Mater, 2018, 30(23): 1800180.
[67]
GAO L, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J]. Nat Nanotechnol, 2007, 2(9):577-583.
[68]
FAN K, XI J, FAN L, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy[J]. Nat Commun, 2018, 9(1): 1440.