目的 探讨MyD88和TRAF6基因多态性对瑞舒伐他汀治疗高脂血症炎症状态的影响。方法 通过PCR荧光定量探针法检测纳入患者TLR4(rs4986790),MyD88(rs7744),MyD88(rs6853),TRAF6(rs5030445),IRAK4(rs4251532)的基因分型,评价服用瑞舒伐他汀8周前后血浆中炎症因子TNF-α,IL-6,IL-1β,MCP-1,sVCAM-1的含量。评价突变基因携带者服药前后全血中血脂水平及炎症因子的含量,并与野生型等位基因携带者相比较。结果 瑞舒伐他汀具有明显的降脂作用,能够降低血清中炎症因子的水平。MyD88(rs7744)和TRAF6(rs5030445)突变基因携带者血清中TNF-α和MCP-1水平明显降低,且与野生型患者相比有显著性差异(P<0.05)。突变基因携带者与野生型患者相比低密度脂蛋白胆固醇和C反应蛋白值明显下降(P=0.017和P=0.027;P=0.025和P=0.031)。结论 MyD88(rs7744)和TRAF6(rs5030445)基因多态性可影响瑞舒伐他汀对机体炎症状态的抑制作用,影响其治疗高血脂炎症状态的疗效。
Abstract
OBJECTIVE To investigate the gene polymorphism of MyD88 and TRAF6 affected on inflammation statue of hyperlipidemia patients treated with rosuvastatin. METHODS The genotypes of TLR4 (rs4986790), MyD88 (rs7744), MyD88 (rs6853), TRAF6 (rs5030445), IRAK4(rs4251532) were detected by PCR method and the plasma levels of TNF-α, IL-6, IL-1 β, MCP-1 and sVCAM-1 were detected. Evaluated the levels of blood lipid and inflammatory factors in the whole blood between the mutant gene carriers and wild allele carriers after dosing rosuvastatin. RESULTS The results shown that the mutant gene carriers of MyD88 (rs7744) and TRAF6 (rs5030445) produced much lower concentration in serum TNF-α, MCP-1, LDL and CRP levels. There was significant difference between the mutant gene carriers and wile-type allele carriers (P=0.017 and P=0.027; P=0.025 and P=0.031). CONCLUSION MyD88 and TRAF6 affect the clinical outcomes of rosuvastatin including lipid-lowing and anti-inflammation. The gene polymorphism of MyD88 (rs7744) and TRAF6 (rs5030445) affect the rosuvastatin clinical effect.
关键词
MyD88 /
TRAF6 /
瑞舒伐他汀 /
高脂血症 /
基因多态性 /
炎症
{{custom_keyword}} /
Key words
MyD88 /
TRAF6 /
rosuvastatin /
hyperlipidemia /
gene polymorphism /
inflammation
{{custom_keyword}} /
中图分类号:
R969.1
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] IOANNIDIS J P A. More than a billion people taking statins? Potential implications of the new cardiovascular guidelines[J]. JAMA, 2014, 311(5):463-464.
[2] KATAKAMI N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus[J]. J Atheroscler Thromb, 2018, 25(1):27-39.
[3] BARKAS F, ELISAF M, LIBEROPOULOS E, et al. Atherogenic dyslipidemia increases the risk of incident diabetes in statin-treated patients with impaired fasting glucose or obesity[J]. J Cardiol, 2019, 74(3):290-295.
[4] KURIHARA O, THONDAPU V, KIM H O, et al. Comparison of vascular response to statin therapy in patients with versus without diabetes mellitus[J]. Am J Cardiol, 2019, 123(10):1559-1564.
[5] BAHRAMI A, PARSAMANESH N, ATKIN S L, et al. Effect of statins on toll-like receptors: a new insight to pleiotropic effects[J]. Pharmacol Res, 2018, 135:230-238.
[6] KATA D, FÖLDESI, FEHER L Z, et al. Rosuvastatin enhances anti-inflammatory and inhibits pro-inflammatory functions in cultured microglial cells[J]. Neuroscience, 2016, 314:47-63.
[7] TARTEY S, TAKEUCHIT O. Pathogen recognition and toll-like receptor targeted therapeutics in innate immune cells[J]. Int Rev Immunol, 2017, 36(2):57-73.
[8] TSAN M F, GAO B. Endogenous ligands of toll-like receptors[J]. J Leukoc Biol, 2004,76(3):514-519.
[9] BRUBAKER S W, BONHAM K S, ZANONI I, et al. Innate immune pattern recognition: a cell biological perspective[J]. Annu Rev Immunol, 2015, 33:257-290.
[10] GUO C C, ZHANG L J, NIE L H, et al. Association of polymorphisms in the MyD88, IRAK4 and TRAF6 genes and susceptibility to type 2 diabetes mellitus and diabetic nephropathy in a southern Han Chinese population[J]. Mol Cell Endocrinol, 2016, 429(5):114-119.
[11] HASENAUER F C, ROSSI U A, CAFFARO M E, et al. Association of TNF rs668920841 and INRA111 polymorphisms with caprine brucellosis: a case-control study of candidate genes involved in innate immunity[J]. Genomics, 2020, 112(6):3925-3932.
[12] DING Y P, FENG Q J, CHEN J S, et al. TLR4/NF-kB signaling pathway gene single nucleotide polymorphisms alter gene expression levels and affect ARDS occurrence and prognosis outcomes[J]. Medicine, 2019, 98(26):e16029.
[13] SU L, CHEN Z W, YAN N, et al. Association between TRAF6 gene polymorphisms and susceptibility of ischemic stroke in Southern Chinese Han population[J]. J Mol Neurosci, 2015, 57(3):386-392.
[14] FANG Y, ZHANG L, ZHOU G Q, et al. TRAF6 polymorphisms not associated with the susceptibility to and severity of sepsis in a Chinese population[J]. World J Emerg Med, 2010, 1(3):169-175.
[15] HE R R, DING S B,LIANG S Z, et al. Effects of atorvastatin, rosuvastatin,and pravastatin on antiplatelet activity of clopidogrel in patients with acute coronary syndrome and different CYP2C19 genotypes[J]. Chin Pharm J (中国药学杂志), 2019, 54(19):1599-1603.
[16] XU X H, SHAH P K, FAURE E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL[J]. Circulation, 2001, 104(25):3103-3108.
[17] TIMOTHY R M, ANDRE C K, PAUL P D, et al. Anti-inflammatory effects of rosuvastatin in healthy subjects: a prospective longitudinal study[J]. Curr Pharm Des, 2014, 20(7):1156-1160.
[18] BOEKHOLDT S M, AGEMA W R, PETERS R J, et al. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events[J]. Circulation, 2003, 107 (19):2416-2421.
[19] HODGKINSON C P, YE S. Statins inhibit toll-like receptor 4-mediated lipopolysaccharide signaling and cytokine expression, pharmacogenet[J]. Genomics, 2008, 18 (9):803-813.
[20] SUN D D, SUN L S, XU Q, et al. SNP-SNP interaction between TLR4 and MyD88 in susceptibility to coronary artery disease in the Chinese Han population[J]. Int J Environ Res Public Health, 2016, 13(3):278-291.
[21] ZHENG X Y, SUN C C, LIU Q, et al. Compound LM9, a novel MyD88 inhibitor, efficiently mitigates inflammatory responses and fibrosis in obesity-induced cardiomyopathy[J]. Acta Pharmacol Sin, 2020, 41(8):1093-1101.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点研发计划主动健康和老龄化科技应对重点专项资助(2020YFC2005504)
{{custom_fund}}