Abstract:We concluded the characteristics of new formulations of ophthalmic nanocrystal and summarized the research development of nanocrystal as ophthalmic drug delivery system. Literature data in recent years were extensively consulted, analyzed, synthesized and summarized to illustrate its advantages in ocular application. The nanocrystal with simple ingredients has little side-effects. It can prolong the retention of drug substance on ocular surface and promote corneal penetration, thus improving the ocular bioavailability. The research of nanocrystal as an ophthalmic drug delivery system has become a new trend, and it is expected to be a promising ophthalmic drug delivery system.
颜蓉, 王亚男, 许来, 吴峥, 王秋贺, 甘莉. 纳米晶作为眼部药物递送系统的研究进展[J]. 中国药学杂志, 2020, 55(24): 1993-1999.
YAN Rong, WANG Ya-nan, XU Lai, WU Zheng, WANG Qiu-he, GAN Li. Progress of Nanocrystal as Ophthalmic Drug Delivery System. Chinese Pharmaceutical Journal, 2020, 55(24): 1993-1999.
GAN L, WANG J, JIANG M, et al. Recent advances in topical ophthalmic drug delivery with lipidbased nanocarriers[J]. Drug Discov Today, 2013, 18(5):290-297.
[2]
LIU Y, WANG Y N, YANG J L, et al. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: prolonged ocular retention, enhanced corneal permeation and improved tear production[J]. Int J Pharm, 2019, 565:133-142.
[3]
KANG H, CHA K H, CHO W, et al. Cyclosporine A micellar delivery systerm for dry eyes[J]. Int J Nanomed, 2016, 11:2921-2933.
[4]
JOHANNSDOTTIR S, KRISTINSSON J K, FULOP Z, et al. Formulations and toxicologic in vivo studies of aqueous cyclosporin A eye drops with cyclodextrin nanoparticles[J]. Int J Pharm, 2017, 529:486-490.
[5]
WU X G, XIN M, SHI W Y. The preparation and ocular biological characters of mycophenolate mofetil nanosuspension in rabbits[C]. Changsha: Chinese Pharmceutical Association, 2010.
[6]
BABA K, TANAKA Y, KUBOTA A, et al. A method for enhancing the ocular penetration of eye drops using nanoparticles of hydrolyzable dye[J]. J Controlled Release, 2011,153(3):278-287.
[7]
NAGAI N, YOSHIOKAC, MANO Y, et al. A nanoparticle formulation of disulfiram prolongs corneal residence time of the drug and reduces intraocular pressure[J]. Exp Eye Res, 2015, 132:115-123.
[8]
SHARMA O P, PATEL V, MEHTA T, et al. Nanocrystal for ocular drug delivery: hope or hype[J]. Drug Deliv Transl Res, 2016, 6(4): 399-413.
[9]
KIM J H, JANG S W, HAN S D, et al. Development of a novel ophthalmic ciclosporin A-loaded nanosuspension using top-down media milling methods[J]. Pharmazie, 2011, 66(7): 491-495.
[10]
LALLEMAND F, FURRER P, FELT-BAEYENS O, et al. A novel water-soluble cyclosporine A prodrug: ocular tolerance and in vivo kinetics[J]. Int J Pharm, 2005, 295(1-2): 7-14.
[11]
YA EZ-SOTO B, MANNIS M J, SCHWAB I R, et al. Interfa- cial phenomena and the ocular surface[J]. Ocular Surf, 2014, 12(3): 178-201.
[12]
MANNER, MAA E, VELLONEN K S, et al. Drug transport in corneal epithelium and blood retina barrier: emerging role of transporters in ocular pharmacokinetics[J]. Adv Drug Deliv Rev, 2006, 58(11): 1136-1163.
[13]
YOU W, QIAN F, WU C, et al. Barriers and methods of ocular drug delivery[J]. Int Pharm Res J(国际药学研究杂志), 2008, 35(4): 284-287.
[14]
KIM J H, JANG S W, HAN S D, et al. Development of a novel ophthalmic ciclosporin A-loaded nanosuspension using top-down media milling methods[J]. Pharmazie, 2011, 66(7): 491-495.
[15]
LYSENG-WILLIAMSON K A. Cationorm (cationic emulsion eye drops) in dry eye disease: a guide to its use[J]. Drugs Ther Perspect, 2016, 32(8): 317-322.
[16]
PHILIPPE D, JEAN S, BASTIEN G, et al. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery [J]. J Pharm Pharmacol, 2014, 66(4): 531-541
[17]
SUN PHARMACETICAL INDUSTRIES, INC. CEQUATM (cyclosporine ophthalmic solution) 0.09%, for topical ophthalmic use[DB/OL]. US Food and Drug Administration, 2019 [2019-09-03]. https://www.drugfuture.com/fda-ndc/label.aspx?ProductNDC=47335-506.
[18]
YUE P F, LIU Y, XIE J, et al. Review and prospect on preparation technology of drug nanocrystals in the past thirty years[J]. Acta Pharm Sin(药学学报), 2018, 53(4): 529-537.
[19]
GIGLIOBIANCO M R, CASADIDIO C, CENSI R, et al. Nanocrystals of poorly soluble drugs: drug bioavailability and physicochemical stability[J]. Pharmaceutics, 2018, 10(3): 134-163.
[20]
CAMASMIE P M C, DOS SANTOS N E, MONTEIRO L M, et al. Advances in ophthalmic preparation: the role of drug nanocrystals and lipid-based nanosystems[J]. J Drug Target, 2019,28(3):259-270.
[21]
ZHOU X Y, LI J L, WANG Y M, et al. Application of new formulations in ocular drug delive system[J]. Chin New Drugs J(中国新药杂志), 2020, 29(1): 55-62.
[22]
ALI H S, YORK P, BLAGDEN N, et al. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling[J]. J Controlled Release, 2011, 149(2):175-181.
[23]
KASSEM M, RAHMAN A A, GHORAB M, et al. Nanosuspension as an ophthalmic delivery system for certain glu-cocorticoid drugs [J]. Int J Pharm, 2007, 340(1): 126-133.
[24]
ROMERO G B, KECK C M, RAINERR H, et al. Development of cationic nanocrystals for ocular delivery[J]. Eur J Pharm Biopharm, 2016, 107: 215-222.
[25]
BABA K, NISHIDA K. Steroid nanocrystals prepared using the nano spray dryer B-90[J]. Pharmaceutics, 2013, 5(1):107-114.
[26]
NAGAI N, ONO H, HASHINO M, et al. Improved corneal toxicity and permeability of tranilast by the preparation of ophthalmic formulations containing its nanoparticles[J]. J Oleo Sci, 2014, 63(2):177-186.
[27]
NAGAI N, ITO Y, OKAMOTO N, et al. A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability[J]. Toxicology, 2014, 319: 53-62.
[28]
SAORI D, HIROKO O, YOSUKE N, et al. Ophthalmic formulation containing nilvadipine nanoparticles prevents retinal dysfunction in rats injected with streptozotocin[J]. Int J Mol Sci, 2017, 18(12): 2720.
[29]
TUOMELA A, LIU P, PURANEB J, et al. Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo[J]. Int J Pharm, 2014, 467(1-2):34-41.
[30]
GUPTA S, SAMANTA M K, RAICHUR A M, et al. Dual-drug delivery system based on in situ gel-forming nanosuspension of forskolin to enhance antiglaucoma efficacy[J]. AAPS Pharm Sci Tech, 2010, 11(1): 322-335.
[31]
SCHOPF L, ENLOW E, POPOV A, et al. Ocular pharmacokinetics of a novel loteprednol etabonate 0.4% ophthalmic formulation[J]. Ophthalmol Ther, 2014, 3(1-2):63-72.
[32]
BABA K, NISHIDA K, HASHIDA N. Method for producing an aqueous dispersion of drug nanoparticles and use thereof: US, 20150087624[P]. 2015.
[33]
SMART J D. The basics and underlying mechanisms of mucoadhe- sion[J]. Adv Drug Deliv Rev, 2005, 57 (11): 1556-1568.
[34]
GAO L, ZHANG D, CHEN M, et al. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system[J]. J Nanoparticle Res, 2008,10(5): 845-862.
[35]
MAKHLOF A, MIYAZAKI Y, TOZUKA Y, et al. Cyclodextrins as stabilizers for the preparation of drug nanocrystals by the emulsion solvent diffusion method[J]. Int J Pharm, 2008, 357(1-2):280-285.
[36]
SHETE G, JAIN H, PUNJ D, et al. Stabilizers used in nano-crystal based drug delivery systems[J]. Int Pharm Excipients Council, 2014, 5(4):184-209.
[37]
KAUR J, KUMAR S. Devolepment of nanocrystal formulation with improved dissolution [J]. J Drug Deliv Ther, 2018, 8(5):118-129.
[38]
ANNIKA T, JOUNI H, LEENA P, et al. Stabilizing agents for drug nanocrystals: effect on bioavailability[J]. Pharmaceutics, 2016, 8(2):16-34.
[39]
LIST M, SUCKER H. Pharmaceutical colloidal hydrosols for injection: GB, 2200048 [P]. 1988-07-27.
[40]
AUWETER H, BOHN H, HEGER R, et al. Precipitated water insoluble colorants in colloid disperse form: US, 6494924 [P]. 2002-12-17.
[41]
KECK C M, MÜLLER R H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization [J]. Eur J Pharm Biopharm, 2006, 62: 3-16.
[42]
MAJURU S, OYEWUMI M O. Nanotechnology in Drug, Development and Life Cycle Management. DE VILLIERS M M, ARAMWIT P, KWON G S Nanotechnology in Drug Delivery[M]. New York: Springer, 2009: 597-619.
[43]
MULLER R H, BECKER R, KRUSS B, et al. Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution: US, 5858410 A [P]. 1999-01-12.
[44]
HELMUT M R, KARSTEN K, KARSTEN M. Verfahren zur schonenden Herstellung von hochfeinen mikropartikeln und nanopartikeln: Germany, DE19932157A [P]. 2001-01-18.
[45]
KIPP J E, WONG J C T, DOTY M J, et al. Microprecipitation method for preparing submicron suspensions: US, 6607784 [P]. 2003-08-19.
[46]
SHARMA O P, PATEL V, MEHTA T. Nanocrystal for ocular drug delivery: hope or hype [J]. Drug Deliv Transl Res, 2016, 6: 399-413.
[47]
MÖSCHWITZER J, LEMKE A. Method for carefully producing ultrafine particle suspensions and ultrafine particles and use: EP, 2006/003377 [P]. 2006-10-19.
[48]
PETERSEN R. Nanocrystals for use in topical cosmetic formulations and method of production thereof: US, 9114077 [P]. 2015-08-25.
[49]
SCHOLZ P, ARNTJEN A, MÜLLER R H, et al. ARTcrystal® process for industrial nanocrystals production optimization of the ART MICCRA pre-milling step [J]. Int J Pharm, 2014, 465: 388-395.
[50]
WANG Y, ZHENG Y, ZHANG L, et al. Stability of nanosuspensions in drug delivery[J]. J Controlled Release, 2013, 172(3):1126-1141.
[51]
LIU P, VIITALA T, KARTAL-HODZIC A, et al. Interaction studies between indomethacin nanocrystals and PEO/PPO copolymer stabilizers[J]. Pharm Res, 2015, 32(2): 628-639.
[52]
VAN EERDENBRUGH B, VERMANT J, MARTENS J A, et al. A screening study of surface stabilization during the production of drug nanocrystals[J]. J Pharm Sci, 2009, 98(6): 2091-2103.
[53]
TUOMELA A, LAAKSONEN T, LARU J, et al. Solid formulations by a nanocrystal approach: critical process parameters regarding scale-ability of nanocrystals for tableting applications[J]. Int J Pharm, 2015, 485(1-2): 77-86.