目的 制备苦参碱固体脂质纳米粒并进行质量评价;利用不同方法测定苦参碱固体脂质纳米粒的包封率,建立其包封率测定方法。方法 以微乳-探头超声法制备固体脂质纳米粒并对其粒径、电位、微观形态、体外释放等进行质量评价;建立苦参碱HPLC含量测定方法;分别采用葡聚糖凝胶法、低温超速离心法、超滤法、透析法测定苦参碱固体脂质纳米粒的包封率,比较各个方法的优点和缺点,筛选并建立有效测定包封率的方法。结果 苦参碱固体脂质纳米粒粒径为(116.7±2.6)nm,Zeta电位为(-45±1.7)mV,透射电镜照片显示固体脂质纳米粒大小均一,形状为球形;体外释放结果显示,纳米粒呈现一定程度的缓释特点;葡聚糖凝胶微柱离心法能有效分离游离药物和固体脂质纳米粒,所测得的包封率数据稳定差异小。结论 本实验成功制备苦参碱固体脂质纳米粒,并对其粒径、电位和体外释放进行了质量评价;建立的葡聚糖凝胶微柱法为水溶性药物固体脂质纳米粒的包封率测定提供可靠参考。
Abstract
OBJECTIVE To prepare matrine solid lipoid nanoparticle,establish preparating method and determine the encapshlation efficiency. METHODS Matrine solid lipoid nanoparticle was prepared by microemulsion-probe ultrasonic method and its quality was evaluated by particle size, Zeta potential, microscopic morphology and in vitro release. The encapsulation efficiency of the carrier was measured by different methods and their effect was compared. RESULTS The diameter of matrine solid lipoid nanoparticle was (116.7±2.6) nm and its Zeta potential was (-45±1.7)mV. Transmission electron micrographs showed that the solid lipoid nanoparticle was uniform in size and spherical. The in vitro release result suggested the carrier exhibited control release character. Dextran gel microcolumn centrifugation can effectively separate free drugs and carriers, and the measured encapsulation efficiency data has little difference in stability. CONCLUSION Matrine solid lipoid nanoparticle is successfully prepared and their particle size, Zeta potential and in vitro release quality are evaluated.Dextran gel microcolumn method is effective in the measurement of matrine solid lipoid nanoparticle, providing a reliable reference for the determination of water-soluble drug encapsulation efficiency.
关键词
苦参碱 /
固体脂质纳米粒 /
包封率
{{custom_keyword}} /
Key words
matrine /
solid lipid nanoparticle /
encapsulation efficiency
{{custom_keyword}} /
中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MA L, WEN S, ZHANY, et al. Anticancer effects of the Chinese medicine matrine on murine hepatocellular carcinoma cells [J]. Planta Med, 2008,74:245-251.
[2] DAI Z, GAO J, JI Z, et al. Matrine induces apoptosis in gastric carcinoma cells via alteration of Fas/FasL and activation of caspase-3 [J]. J Ethnopharmacol, 2009, 123: 91-96.
[3] CAO H W, ZHANG H, CHEN Z B, et al. Chinese traditional medicine matrine: a review of its antitumor activities [J]. J Med Plants Res, 2011, 5(10):1806-1811.
[4] FENG Y,YING H Y, QU Y, et al. Novel matrine derivative md-1 attenuates hepatic fibrosis by inhibiting egfr activation of hepatic stellate cells [J]. Protein Cell, 2016, 7(9):662-672.
[5] YU G, WAN R, YIN G. Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-κB[J]. Int J Clin Exp Pathol, 2014, 7 (5) :2133-2142.
[6] ZHANG J P, ZHANG M, JIN C, et al. Matrine inhibits production and actions of fibrogenic cytokines released by mouse peritoneal macrophages [J]. Acta Pharmacol Sin(中国药理学报), 2001, 22(8): 765-768.
[7] ALMELDA A J, SOUTO E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins [J]. Adv Drug Deliv Rev, 2007, 59(6):478-490.
[8] TAPEINOS C, BATTAGLINI M, CIOFANI G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases [J]. J Controlled Release, 2017, 264:306-332.
[9] ZHANG R X, AHMED T, LI L Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks [J]. Nanoscale, 2017, 9(4):1334-1355.
[10] SONG C X, HE S L, CAO C F, et al. Research progress on drug delivery of solid lipid nanoparticles and nanostructured lipid carriers [J].J Pharm Res(药学研究), 2016,35(4):234-236,245.
[11] WANG W X, DAI K, TANG L. The formulation and in vitro evaluation of R8-modified liposome for carrying antisense oligodeoxynucleotide[J]. J Zhejiang Univ Technol(浙江工业大学学报), 2014,42(3):334-337.
[12] HOU D Z, LIU C K, PING Q N, et al. The entrapped efficiency of BSA liposome [J].Acta Pharm Sin(药学学报), 2007,42(5):545-549.
[13] HAN M H, CHEN J, CHEN S L, et al. Determination of content and entrapment efficiency of 20 (S)-protopanaxadiol in pharmacosomes by RP-HPLC method[J]. China J Chin Mater Med(中国中药杂志), 2009,34(9):1082-1085.
[14] LEI G F, CHEN L, DENG Y J, et al. Determination of entrapment efficiency for liposomal formulation of breviscapine using ultrafiltration-HPLC method[J]. J Shenyang Pharm Univ(沈阳药科大学学报), 2006, 23(4):237-239.
[15] ZHANG W T, HUANG Q B, LIN L F, et al. Determination of the entrapment efficiency of decetaxol liposome[J]. Chin J Hosp Pharm(中国医院药学杂志), 2008,28(14):41-43.
[16] WOLFGANG M, KARSTEN M. Solid lipid nanoparticles: production, characterization and applications[J]. Adv Drug Deliv Rev, 2012, 47(2-3):165-196.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
十三五重大新药创制科技重大专项项目资助(2018ZX09711001-002-005;2018ZX09721003-007-007);中国医学科学院医学与健康科技创新工程项目资助(2017-I2M-3-012)
{{custom_fund}}