Progress of Gut Microbiota in the Antineoplastic Efficacy of Chemotherapeutic Drugs
MA Wen-bing1,2, LU Xiao-yun2, ZHUO Ying-chen1, ZHENG Qiao-wei1, FENG Wei-yi1*
1. Department of Pharmacology, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; 2. The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Abstract:Chemotherapeutic drugs play an important role in the treatment of cancer, but the individual differences of patients' sensitivity to chemotherapeutic drugs and the drug resistance of chemotherapeutic drugs have always been a thorny problem in clinical treatment. Recent studies have shown that gut microbiota plays a key role in regulating the efficacy of chemotherapeutic drugs. Gut microbiota can regulate host response to chemotherapy through a variety of mechanisms, including immune interaction, heterogeneous metabolism and changes in community structure. This paper introduces the effects of traditional chemotherapeutic drugs and new immunotherapeutic drugs, such as anti-CTLA-4 and anti-PD-1 antibodies, on gut microbiota, as well as their effects on chemotherapeutic efficacy and mechanism, in order to provide evidences and clues for cancer treatments targeting gut microbiota.
马文兵, 卢晓云, 禚映辰, 郑巧伟, 封卫毅. 肠道菌群对化疗药物抗肿瘤疗效的影响及其研究进展[J]. 中国药学杂志, 2020, 55(12): 979-984.
MA Wen-bing, LU Xiao-yun, ZHUO Ying-chen, ZHENG Qiao-wei, FENG Wei-yi. Progress of Gut Microbiota in the Antineoplastic Efficacy of Chemotherapeutic Drugs. Chinese Pharmaceutical Journal, 2020, 55(12): 979-984.
SENDER R, FUCHS S, MILO R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8): e1002533.
[2]
JANDHYALA S M, et al. Role of the normal gut microbiota[J]. World J Gastroenterol, 2015, 21(29): 8787-8803.
[3]
ROY S, TRINCHIERI G. Microbiota: a key orchestrator of cancer therapy[J]. Nat Rev Cancer, 2017, 17(5): 271-285.
[4]
PANEBIANCO C, POTENZA A, ANDRIULLI A, et al. Exploring the microbiota to better understand gastrointestinal cancers physiology[J]. Clin Chem Lab Med, 2018, 56(9): 1400-1412.
[5]
VON FRIELING J, FINK C, HAMM J, et al. Grow with the challenge-microbial effects on epithelial proliferation, carcinogenesis, and cancer therapy[J]. Front Microbiol, 2018, 9:2020.
[6]
GORI S, INNO A, BELLUOMINI L, et al. Gut microbiota and cancer: how gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy[J]. Crit Rev Oncol Hemat, 2019, 143: 139-147.
[7]
REN D X, HUA Y, YU B Y, et al. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy[J]. Mol Cancer, 2020, 19(1): 19.
[8]
ZITVOGEL L, GALLUZZI L, VIAUD S, et al. Cancer and the gut microbiota: an unexpected link[J]. Sci Transl Med, 2015,7(271):271ps1.
[9]
ALEXANDER J L, WILSON I, TEARE J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(6): 356-365.
[10]
VON B I, ADLERBERTH I,WOLD A, et al. Oral and intestinal microflora in 5-fluorouracil treated rats, translocation to cervical and mesenteric lymph nodes and effects of probiotic bacteria[J]. Oral Microbiol Immunol, 2003, 18(5): 278-284.
[11]
NAM Y D, KIM H J, SEO J G, et al. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing[J]. PLoS One, 2013, 8(12): 82659.
[12]
TAUR Y, JENQ R R,PERALES M A, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation[J]. Blood, 2014, 124(7): 1174-1182.
[13]
POPE J L, TOMKOVICH S, YANG Y, et al. Microbiota as a mediator of cancer progression and therapy[J]. Transl Res, 2017, 179: 139-154.
[14]
SHUI L, YANG X, LI J, et al. Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy[J]. Front Immunol, 2020, 10:2989.
[15]
SCOTT T A, QUINTANEIRO L M, NORVAISAS P, et al. Host-microbe co-metabolism dictates cancer drug efficacy in C. elegans[J]. Cell, 2017, 169(3): 442-456.
[16]
GATTI L, ZUNINO F. Overview of tumor cell chemoresistance mechanisms[J]. Methods Mol Med, 2005, 111:127-148.
[17]
VIAUD S, SACCHERI F, MIGNOT G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science, 2013, 342(6161): 971-976.
[18]
DAILLERE R, VETIZOU M, WALDSCHMITT N, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects[J]. Immunity, 2016, 45(4): 931-943.
[19]
CANTA A, POZZI E, CAROZZI V A. Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN) [J]. Toxics, 2015, 3(2): 198-223.
[20]
ZHOU H H, ZHANG L, ZHANG H X, et al. Tat-HA-NR2B9c attenuate oxaliplatin-induced neuropathic pain[J]. Exp Neurol, 2019, 311: 80-87.
[21]
YEHIA R, SALEH S, ABHAR H E, et al. L-Carnosine protects against oxaliplatin-induced peripheral neuropathy in colorectal cancer patients: a perspective on targeting Nrf-2 and NF-kappa B pathways[J]. Toxicol Appl Pharmacol, 2019, 365: 41-50.
[22]
GHISONI E, CASALONE V, GIANNONE G, et al. Role of mediterranean diet in preventing platinum based gastrointestinal toxicity in gynecolocological malignancies: a single institution experience[J]. World J Clin Oncol, 2019, 10(12):391-401.
[23]
IIDA N, DZUTSEV A, STEWART C, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161): 967-970.
[24]
GUI Q F,LU H F,ZHANG C X, et al. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model[J]. Genet Mol Res, 2015, 14(2): 5642-5651.
[25]
WU C H, KO J L, LIAO J M, et al. D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation[J]. Ther Adv Med Oncol, 2019, 11:1758835918821021. DOI: 10.1177/1758835918821021.
[26]
REN X X, LIU L, LIU P K, et al. Polysaccharide extracted from Enteromorpha ameliorates cisplastin-induced small intestine injury in mice[J]. J Funct Foods, 2018, 49: 154-161.
[27]
WEXLER H M. Bacteroides: the good, the bad, and the nitty-gritty[J]. Clin Microbiol Rev, 2007, 20(4): 593-621.
[28]
MOLINARO A, HOLST O, DILORENZO F, et al. Chemistry of lipid A: at the heart of innate immunity[J]. Chem Eur J, 2015, 21(2): 500-519.
[29]
MAESHIMA N, FERNANDEZ R C. Recognition of lipid A variants by the TLR4-MD-2 receptor complex[J]. Front Cell Infect Microbiol, 2013, 3:3.
[30]
HEUMANN D, ROGER T. Initial responses to endotoxins and Gram-negative bacteria[J]. Clin Chim Acta, 2002, 323(1-2): 59-72.
[31]
STOJANOVSKA V, MCQUADE R M, FRASER S, et al. Oxaliplatin-induced changes in microbiota, TLR4+cells and enhanced HMGB1 expression in the murine colon[J]. PLoS One, 2018, 13(6):e0198359.
[32]
MCQUADE R M, STOJANOVSKA V, BORNSTEIN J C, et al. Colorectal cancer chemotherapy: the evolution of treatment and new approaches[J]. Curr Med Chem, 2017, 24(15): 1537-1557.
[33]
LEE J J, BEUMER J H, CHU E. Therapeutic drug monitoring of 5-fluorouracil[J]. Cancer Chemother Pharmacol, 2016, 78(3): 447-464.
[34]
GONZALEZ V M, MARGARITA M S, VICENTE G, et al. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells[J]. Pharmacol Res, 2013, 72: 61-68.
[35]
RIBEIRO R A, WANDERLEY C W S, WONG D V T, et al. Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives[J]. Cancer Chemother Pharmacol, 2016, 78(5): 881-893.
[36]
LEE C S, RYAN E J, DOHERTY G A. Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: the role of inflammation[J]. World J Gastroenterol, 2014, 20(14): 3751-3761.
[37]
VAN SEBILLE Y Z A, GIBSON R J, WARDILL H R, et al. Highlight article: use of zebrafish to model chemotherapy and targeted therapy gastrointestinal toxicity[J]. Exp Biol Med, 2019, 244(14): 1178-1185.
[38]
ZHANG S, YANG Y, WENG W, et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer[J]. J Exp Clin Cancer Res, 2019,38(1):14.
[39]
YUAN L, ZHANG S, LI H, et al. The influence of gut microbiota dysbiosis to the efficacy of 5-fluorouracil treatment on colorectal cancer[J]. Biomed Pharmacother, 2018, 108: 184-193.
[40]
JUSTINO P F C, MELO L F M, NOGUEIRA A F, et al. Treatment with Saccharomyces boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice[J]. Br J Nutr, 2014, 111(9): 1611-1621.
[41]
LI H L, LU L, WANG X S, et al. Alteration of gut microbiota and inflammatory cytokine/chemokine profiles in 5-fluorouracil induced intestinal mucositis[J]. Front Cell Infect Microbiol, 2017, 7:455.
[42]
GARCIA G A.P, RITTER A D,SHRESTHA S, et al. Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics[J]. Cell, 2017, 169(3): 431-441.
[43]
STRINGER A M, GIBSON R J, LOGAN R M, et al. Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis[J]. Exp Biol Med, 2009, 234(4): 430-441.
[44]
GELLER L T, BARZIY R M, DANINO T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine[J]. Science, 2017, 357(6356): 1156-1160.
[45]
VOORDE J V, BALZARINI J, LIEKENS S. Mycoplasmas and cancer: focus on nucleoside metabolism[J]. Excli J, 2014, 13: 300-322.
[46]
VANDE V J, SABUNCUOGLU S, NOPPEN S, et al. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine[J]. J Biol Chem, 2014, 289(19): 13054-13065.
[47]
HUANG S,LI J, WU J, et al. Mycoplasma infections and different human carcinomas[J]. World J Gastroenterol, 2001, 7(2): 266-269.
[48]
LEHOURITIS P, CUMMINS J, STANTON M, et al. Local bacteria affect the efficacy of chemotherapeutic drugs[J]. Sci Rep, 2015, 5:14554.
[49]
CHANG R, CHEN W, ZHOU T. Influence of gut microbiota regulation on pharmacokinetic characteristics[J]. Chin Pharm J (中国药学杂志), 2019, 54(15): 1211-1215.
[50]
XU Y, VILLALONA C M. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity[J]. Ann Oncol, 2002, 13(12): 1841-1851.
[51]
GUTHRIE L, SANCHIT G, JOHANNA D, et al. Human microbiome signatures of differential colorectal cancer drug metabolism[J]. Npj Biofilms Microbiomes, 2017, 3:27.
[52]
LIN X B, DIELEMAN L, KETABI A, et al. Irinotecan (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats[J]. PLoS One, 2012, 7(7): e39764.
[53]
FORSGARD R A, MARRACHELLI V G, KORPELA K, et al. Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague-Dawley rats[J]. Cancer Chemother Pharmacol, 2017, 80(2): 317-332.
[54]
VETIZOU M, PITT J, DAILLERE R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084.
[55]
MATSON V, FESSLER J, BAO R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science, 2018, 359(6371): 104-108.
[56]
BUCHBINDER E I, DESAI A. CTLA-4 and PD-1 pathways similarities, differences, and implications of their inhibition[J]. Am J Clin Oncol, 2016, 39(1): 98-106.
[57]
GOUBET A G, DAILLERE R, ROBERTI M, et al. The impact of the intestinal microbiota in therapeutic responses against cancer[J]. C R Biologies, 2018, 341(5): 284-289.
[58]
ALSAAB H O,SAU S, ALZHRANI R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome[J]. Front Pharmacol, 2017,8:561.
[59]
SIVAN A, CORRALES L, HUBERT N, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089.
[60]
ROUTY B, CHATELIER E L, DEROSA L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97.
[61]
GOPALAKRISHNAN V, SPENCER C, NEZI L,et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103.
[62]
JOBIN C. Precision medicine using microbiota[J]. Science, 2018, 359(6371): 32-34.