磁导向性光敏药物载体的制备及其阿糖胞苷释放效果的研究

王知平, 池泽锋, 陈铁寓

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (24) : 2102-2107.

PDF(6166 KB)
PDF(6166 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (24) : 2102-2107. DOI: 10.11669/cpj.2018.24.006
论著

磁导向性光敏药物载体的制备及其阿糖胞苷释放效果的研究

  • 王知平1, 池泽锋2, 陈铁寓3*
作者信息 +

Preparation of Site-specific Smart Nanocomposites for Drug Delivery and Study on Light-Controlled Cytarabine Release Performance

  • WANG Zhi-ping1, CHI Ze-feng2, CHEN Tie-yu3*
Author information +
文章历史 +

摘要

目的 制备具有磁导向性的智能药物载体,初步研究其生物毒性及其对阿糖胞苷的控释效果。方法 通过高压水热反应合成出具有超顺磁性的纳米核心-Fe3O4球,进一步于磁核外部包裹MCM-41分子筛以形成核-壳结构;在MCM-41分子筛孔道内连接“门控”分子4,5-二氮杂芴-9-酮(DAFO),从而获得具有大比表面积、良好承载能力的智能药物载体。结果 本实验所制备得到的纳米Fe3O4球直径为280 nm,经SiO2、MCM-41分子筛包覆、门控分子修饰后粒径增至540 nm左右。利用透射电镜(TEM)、扫描电镜(SEM)以及N2吸附/解吸法等手段对载体的结构与吸附能力进行了测试;运用MTT法对载体细胞毒性进行了检测,并以阿糖胞苷为实验药物进行了初步体外控释效果分析。结论 所得药物载体无细胞毒性,可在外加磁场下向所需部位聚集,并在特定波长光线照射下通过门控分子构型翻转释放出药物分子,从而实现磁导向性智能控释。

Abstract

OBJECTIVE To prepare smart & site-specific drug carrier for controlled release purpose and study the bio-compatibilities and release performance.METHODS By using high pressure thermo-heat method in autoclave, superparamagnetic core was obtained and further coated by SiO2 and MCM-41, therefore the “core-shell” structure was formed. To make the carrier “smart” and thus responsive to stimuli which was light in this research, the tunnels of the molecular sieve were grafted with gating molecules, 4,5-diazafluoren-9-one (indicated in the paper as DAFO). For bio-compatibilities testing, MTT in-vitro experiment was conducted. Cytarabine was used as test drug to preliminarily evaluate the controlled release performance of the drug carrier in vitro.RESULTS The Fe3O4 nano-particles synthesized via high-pressure hydro-thermo procedure exhibited superparamagnetic with mean diameter of 280 nm. After SiO2 & molecular sieve coating steps and ligand grafting steps, the particles grew to 540 nm. The sub-structure of the carrier was confirmed by scanning/transmission electron microscope(SEM & TEM) and nitrogen adsorption/desorption. Our “smart” carrier was able to be guided to the sites or organs with magnetic field and more importantly it was able to unload drug molecules under 510 nm light irritation that could flip the gating-molecule. Furthermore, the drug carrier illustrated bio-compatibility and showed obvious cytotoxicity.CONCLUSION The novel nanocomposites developed in this study can be used as targeted drug carrier.

关键词

磁导向性 / 药物载体 / 核壳结构 / 纳米载体 / 智能释放 / 阿糖胞苷

Key words

site-specific / drug delivery / core-shell / nanocomposite / smart carrier / cytarabine

引用本文

导出引用
王知平, 池泽锋, 陈铁寓. 磁导向性光敏药物载体的制备及其阿糖胞苷释放效果的研究[J]. 中国药学杂志, 2018, 53(24): 2102-2107 https://doi.org/10.11669/cpj.2018.24.006
WANG Zhi-ping, CHI Ze-feng, CHEN Tie-yu. Preparation of Site-specific Smart Nanocomposites for Drug Delivery and Study on Light-Controlled Cytarabine Release Performance[J]. Chinese Pharmaceutical Journal, 2018, 53(24): 2102-2107 https://doi.org/10.11669/cpj.2018.24.006
中图分类号: R944   

参考文献

[1] ALLEN T M, CULLIS P R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665):1818-1822.
[2] IMMORDINO M L, DOSIO F, CATTEL L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed, 2006, 1(3):297-315.
[3] ALMEIDA A J, SOUTO E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev, 2007, 59(6):478-490.
[4] LAMPRECHT A, SAUMET J L, ROUX J, et al. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int J Pharm, 2004, 278(2):407-414.
[5] CAI Y, LING L, LI X, et al. Light-stimulated cargo release from a core-shell structured nanocomposite for site-specific delivery. J Solid State Chem, 2015, 226:179-185.
[6] MA Y, GAO Y, WANG Y, et al. Synthesis and application of new ruthenium dye containing 9,9--4,5-diazafluorene ligand. Mod Appl Sci, 2011, 5(4):1174-1178.
[7] KLOC K, MLOCHOWSKI J, SZULC Z. Synthesis of Azafluorenones. J Fürpraktische Chemie, 2004,319(6):959-967.
[8] DONG W, LI Y, NIU D, et al. Theranostic nanoshells: facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv Mater, 2011, 23(45):5332-5332.
[9] ARSALANI, FATTAHI N, NAZARPOOR H. Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Exp Poly Lett, 2010, 4(6):329-338.
[10] ZHANG S, ZHAO X, NIU H, et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater, 2009, 167(1-3):560-566.
[11] AND M K, JARONIEC M. Gas adsorption characterization of ordered organic inorganic-nanocomposite materials. Chem Mater, 2001, 13(10):3169-3183.
[12] VALLET-REGI M, RÁMILA A, REAL R P D, et al. A new property of MCM-41: drug delivery system. Chem Mater, 2001, 13(2):308-311.
[13] LI W P, LIAO P Y, SU C H, et al. Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J Am Chem Soc, 2014, 136(28):10062-10075.
[14] HILHORST M J, HENDRIKS G, VAN HOUT M W, et al. HPLC-MS/MS method for the determination of cytarabine in human plasma. Bioanalysis, 2011, 3(14):1603-1611.

基金

广西高校中青年教师基础能力提升项目资助(2017KY0130,2017KY0086)
PDF(6166 KB)

Accesses

Citation

Detail

段落导航
相关文章

/