目的 研究表皮生长因子受体(EGFR)/CD13双靶点抗体药物偶联物Fv-LDM-NGR抑制肿瘤生长的作用机制。方法 选用人乳腺癌细胞MCF-7、人肺腺癌细胞A549和人微血管内皮细胞(HMEC)-1作为研究对象。采用四甲基偶氮唑蓝(MTT)实验测定Fv-LDM-NGR对肿瘤细胞和内皮细胞增殖的影响。小管形成(tube formation)实验观察HMEC-1细胞形成的管腔结构。Transwell实验测定Fv-LDM-NGR对肿瘤细胞迁移和侵袭的影响。Western blot分析其对细胞内EGFR细胞信号通路、细胞周期信号通路以及凋亡通路的影响。利用流式细胞术、Hoechst染色和Annexin Ⅴ-FITC/PI双染法观察细胞周期的变化以及细胞凋亡。结果 Fv-LDM-NGR能够显著抑制肿瘤细胞的体外增殖,其对肿瘤细胞MCF-7和A549以及人微血管内皮细胞HMEC-1的半数抑制浓度 (IC50)分别为3.27×10-14、4.72×10-13和1.17×10-12 mol·L-1。Fv-LDM-NGR能够干扰血管内皮细胞形成管腔结构,抑制肿瘤细胞的迁移和侵袭。对细胞信号通路具有调节作用;引起细胞周期G2/M期和S期阻滞;诱导肿瘤细胞发生凋亡。结论 Fv-LDM-NGR通过干扰CD13活性,削弱肿瘤细胞的侵袭能力,阻碍血管内皮细胞形成管腔结构;通过下调EGFR的表达及磷酸化,干扰细胞信号通路,阻滞细胞周期循环和诱导细胞凋亡,抑制肿瘤细胞的增殖和迁移。
Abstract
OBJECTIVE To investigate the inhibitory effects of bispecific antibody-drug conjugate Fv-LDM-NGR targeting EGFR and CD13 on human tumor cells and endothelial cells,and possible mechanisms. METHODS Human breast cancer cells MCF-7, human lung adenocarcinoma cells A549 and human microvascular endothelial cells HMEC-1, were studied. MTT assay was applied to measure proliferative activity of tumor cells. The influence of Fv-LDM-NGR on tube formation of HMEC-1 was observed. Transwell assay was applied to measure migration and invasion capacity in tumor cells. Western blot was applied for analyzing intracellular signaling transduction pathways. Flow cytometry, Hochest stain and Annexin Ⅴ-FITC/PI were used to detect cell cycle and apoptosis. RESULTS Fv-LDM-NGR could inhibit the proliferation of tumor cells and microvascular endothelial cells with IC50 values of 10-14-10-12mol·L-1. Fv-LDM-NGR prevented tube formation in microvascular endothelial cells, and suppressed migration and invasion in tumor cells. Fv-LDM-NGR interfered with the intracellular signaling transduction pathways, then caused G2/M and S phase arrest and induced apoptosis. CONCLUSION Bispecific antibody-drug conjugate Fv-LDM-NGR could prevent cell invasion in tumor cells and tube formation in microvascular endothelial cells through blocking activity of CD13. And it could down-regulate the expression and the phosphorylation of EGFR, interfere with cellular signal pathways, induce cell cycle arrest and cell apoptosis, and inhibit cell proliferation and migration.
关键词
表皮生长因子受体 /
CD13 /
力达霉素 /
抗体药物偶联物 /
抗肿瘤
{{custom_keyword}} /
Key words
EGFR /
CD13 /
lidamycin /
antibody-drug conjugate /
antitumor
{{custom_keyword}} /
中图分类号:
R965
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WAINBERG Z A, ANGHEL A, DESAI A J, et al. Lapatinib, a dual EGFR and HER2 kinase inhibitor, selectively inhibits HER2-amplified human gastric cancer cells and is synergistic with trastuzumab in vitro and in vivo. Clin Cancer Res, 2010, 16(5):1509-1519.
[2] PATIL S, FIGLIN R A, HUSTON T E, et al. Prognostic factors for progression-free and overall survival with sunitinib targeted therapy and with cytokine as first-line therapy in patients with metastatic renal cell carcinoma. Ann Oncol, 2011, 22(2):295-300.
[3] NEDAEINIA R, AVANA A, MANIAN M, et al. EGFR as a potential target for the treatment of pancreatic cancer:dilemma and controversies. Curr Drug Targets, 2014, 15(14):1293-1301.
[4] SHENG W J, SHANG B Y, MIAO Q F, et al. Construction of a single-chain fv antibody against epidermal growth factor receptor and its antitumor activity.Chin Pharm J(中国药学杂志), 2011, 46(18):1393-1398.
[5] WICKSTROM M, LARSSON R, NYGREN P, et al. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci, 2011, 102(3):501-508.
[6] MATTEO P D, ARRIGONI G L, ALBERICI L, et al. Enhanced expression of CD13 in vessels of inflammatory and neoplastic tissues.J Histochem Cytochem, 2011, 59(1):47-59.
[7] RANOGAJEC I, JAKIC-RAZUMOVIC J, PUZOVIC, et al. Prognostic value of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and aminopeptidase N/CD13 in breast cancer patients.Med Oncol, 2012, 29(2):561-569.
[8] WULFANGER J, SCHNERIDER H, WILD P, et al. Promoter methylation of aminopeptidase N/CD13 in malignant melanoma. Carcinogenesis, 2012, 33(4):781-790.
[9] NOHARA S, KATO K, FUJIWARA D, et al. Aminopeptidase N (APN/CD13) as a target molecule for scirrhous gastric cancer. Clin Res Hepatol Gastroenterol, 2016, 40(4):501-508.
[10] GRAZIADIO A, ZANDA M, FRAU S, et al. NGR tumor-homing peptides:structural requirements for effective APN (CD13) targeting.Bioconjug Chem, 2016, 27(5):1332-1340.
[11] ENYEDI K N, CZAJLIK A, KNAPP K, et al. Development of cyclic NGR peptides with thioether linkage:structure and dynamics determining deamidation and bioactivity. J Med Chem, 2015, 58(4):1806-1817.
[12] QIAN J. Research advances of enediyne antitumor antibiotics. Chin J Mod Drug Appl(中国现代药物应用), 2012, 6(22):124-125.
[13] SHENG W J, SHANG Y, LI L, et al. An EGFR/CD13 bispecific fusion protein and its enediyne-energized analog show potent antitumor activity. Anti-cancer Drugs, 2014, 25(1):182-191.
[14] ZHU Q W, ZHOU J Q. The research and development of antibody drug conjugates(ADCs) and discussion on its key influencing factors.Pharm Biotech(药物生物技术), 2016, 23(5):431-436.
[15] MIURA K. Antibody-drug conjugates. Nichidai Igaku Zasshi, 2017, 76(1):15-18.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
中国医学科学院医学与健康科技创新工程资助(2016-I2M-1-011)
{{custom_fund}}