多肽修饰的pH敏感脂质体研究进展

于平华, 梁菊, 赵欢乐, 龙登高

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (11) : 849-853.

PDF(1556 KB)
PDF(1556 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (11) : 849-853. DOI: 10.11669/cpj.2018.11.001
·综述·

多肽修饰的pH敏感脂质体研究进展

  • 于平华1, 梁菊1*, 赵欢乐1, 龙登高2
作者信息 +

Advances in Peptide-Modified pH-sensitive Liposomes

  • YU Ping-hua1, LIANG Ju1*, ZHAO Huan-le1, LONG Deng-gao2
Author information +
文章历史 +

摘要

多肽修饰的pH敏感脂质体作为药物或核酸的载体可以主动靶向肿瘤部位,使抗肿瘤药物或核酸在特定区域释放,降低药物对正常组织或细胞的毒副作用、提高药物/核酸的治疗效果。笔者主要从多肽修饰的pH敏感脂质体的释药机制、修饰方式和应用等方面进行综述,为多肽修饰的pH敏感脂质体的制备及抗肿瘤药物载体设计方面的研究提供相应参考。

Abstract

As one of drug or gene carriers, peptide-modified pH-sensitive liposomes can actively target the tumor tissues, release anti-tumor drugs in specific areas, reduce side effects of drugs, and improve their therapeutic potency. In this review, the modification methods of peptide-modified liposomes and their anti-tumor applications by gene transfection and drug delivery are introduced. This paper is expected to provide a reference for the preparation of peptide-modified pH-sensitive liposomes and design of carriers for anti-tumor drugs.

关键词

多肽 / pH敏感脂质体 / 修饰方式 / 药物载体

Key words

peptide / pH-sensitive liposome / modification method / drug carrier

引用本文

导出引用
于平华, 梁菊, 赵欢乐, 龙登高. 多肽修饰的pH敏感脂质体研究进展[J]. 中国药学杂志, 2018, 53(11): 849-853 https://doi.org/10.11669/cpj.2018.11.001
YU Ping-hua, LIANG Ju, ZHAO Huan-le, LONG Deng-gao. Advances in Peptide-Modified pH-sensitive Liposomes[J]. Chinese Pharmaceutical Journal, 2018, 53(11): 849-853 https://doi.org/10.11669/cpj.2018.11.001
中图分类号: R944   

参考文献


[1] BANGHAM A, HORNE R. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope[J]. J Mol Biol, 1964, 8(5):660-668.
[2] AKBARZADEH A, REZAEI-SADABADY R, DAVARAN S, et al. Liposome:classification,preparation, and applications[J]. Nanoscale Res Lett, 2013, 8(1):102.
[3] CHEN Y, SUN J, LU Y, et al. Complexes containing cationic and anionic pH-sensitive liposomes:comparative study of factors influencing plasmid DNA gene delivery to tumors[J]. Int J Nanomed, 2013, 8:1573-1589.
[4] ZUNUNI V, SALEHI R, DAVARAN S, et al. Liposome-based drug co-delivery systems in cancer cells[J]. Mat Sci Eng C-Mater, 2017, 71:1327-1341.
[5] AOKI A, AKABOSHI H, OGURA T, et al. Preparation of pH-sensitive anionic liposomes designed for drug delivery system(DDS) application[J]. J Oleo Sci, 2015, 64(2):233-242.
[6] KNEIDL B, PELLER M, WINTER G, et al. Thermosensitive liposomal drug delivery systems:state of the art review[J]. Int J Nanomed, 2014, 9:4387-4398.
[7] LIN C, JAVADI M, BELNAP D, et al. Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy[J]. Nanomed-Nanotechnol, 2014, 10(1):67-76.
[8] SHARMA K, KUMAR V. Release kinetics of novel photosensitive liposome for triggered delivery of entrapped drug[J]. IJPR, 2015, 8(1):106-113.
[9] KATO Y, OZAWA S, MIYAMOTO C, et al. Acidic extracellular microenvironment and cancer[J]. Cancer Cell Inter, 2013, 13(1):89.
[10] VIVES E, SCHMIDT J, PELEGRIN A. Cell-penetrating and cell-targeting peptides in drug delivery[J]. Biochim Biophys Acta, 2008, 1786(2):126-138.
[11] ZHOU G, XU Y, CHEN M. Tumor-penetrating peptide modified and pH-sensitive polyplexes for tumor targeted siRNA delivery[J]. Polymer Chem, 2016, 7(23):3857-3863.
[12] LEE Y, THOMPSON D. Stimuli-responsive liposomes for drug delivery[J]. Wires Nanomed Nanobi, 2017, 9(5):1-40.
[13] THAMPHIWATANA S, FU V, ZHU J, et al. Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery[J]. Langmuir, 2013, 29(39):12228-12233.
[14] KALE A, TORCHILIN V. Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers:the effect of substitutes at the hydrazone linkage on the pH stability of PEG-PE conjugates[J]. Bioconjugate Chem, 2007, 18(2):363-370.
[15] ASAYAMA S, MIYUKI S, SHOJI N, et al. Carboxymethyl poly(L-histidine) as a new pH-sensitive polypeptide to enhance polyplex gene delivery[J]. Mol Pharm, 2008, 5(5):898-901.
[16] YAROSLAVOV A, SYBACHIN A, KESSELMAN E, et al. Liposome fusion rates depend upon the conformation of polycation catalysts[J]. J Am Chem Soc, 2011, 133(9):2881-2883.
[17] BURKS S, LEGENZOV E, MARTIN E W, et al. Co-encapsulating the fusogenic peptide INF7 and molecular imaging probes in liposomes increases intracellular signal and probe retention[J]. PLoS One, 2015, 10(3):e0120982.
[18] ANDREW M J, CHILKOTI A. Temperature sensitive peptides: engineering hyperthermia-directed therapeutics[J]. Int J Hyperther, 2008, 24(6):483-495.
[19] YANG Y, YANG Y, XIE X, et al. Preparation and characterization of photo-responsive cell-penetrating peptide-mediated nanostructured lipid carrier[J]. J Drug Target, 2014, 22(10):891-900.
[20] WU X L, KIM J H, KOO H, et al. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy[J]. Bioconj Chem, 2010, 21(2):208-213.
[21] LI Z, HU J, XU Q, et al. A redox-responsive drug delivery system based on RGD containing peptide-capped mesoporous silica nanoparticles[J]. J Mater Chem B, 2015, 3(1):39-44.
[22] CHEN W, XU X, JIA H, et al. Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo[J]. Biomaterials, 2013, 34(34):8798-8807.
[23] CHANG M, LU S, ZHANG F, et al. RGD-modified pH-sensitive liposomes for docetaxel tumor targeting[J]. Colloids Surf B Biointerfaces, 2015, 129:175-182.
[24] YANG X, YANG S, CHAI H, et al. A novel isoquinoline derivative anticancer agent and its targeted delivery to tumor cells using transferrin-conjugated liposomes[J]. PLoS One, 2015, 10(8):e0136649.
[25] ZHANG Q, TANG J, FU L, et al. A pH-responsive alpha-helical cell penetrating peptide-mediated liposomal delivery system[J]. Biomaterials, 2013, 34(32):7980-7993.
[26] ZHAO Y, REN W, ZHONG T, et al. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity[J]. J Controlled Release, 2016, 222:56-66.
[27] XIA T, HE Q, SHI K, et al. Losartan loaded liposomes improve the antitumor efficacy of liposomal paclitaxel modified with pH sensitive peptides by inhibition of collagen in breast cancer[J]. Pharm Dev Technol, 2016,23(1):13-21.
[28] XU H, HU M, YU X, et al. Design and evaluation of pH-sensitive liposomes constructed by poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate for doxorubicin delivery[J]. Eur J Pharm Biopharm, 2015, 91:66-74.
[29] SCHACH D K, ROCK W, FRANZ J, et al. Reversible activation of a cell-penetrating peptide in a membrane environment[J]. J Am Chem Soc, 2015, 137(38):12199-12202.
[30] KAKUDO T, CHAKI S, FUTAKI S, et al. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide:an artificial viral-like delivery system[J]. Biochem, 2004, 43(19):5618-5628.
[31] SOSUNOV E A, ANYUKHOVSKY E P, SOSUNOV A A, et al. pH(Low) insertion peptide(pHLIP) targets ischemic myocardium[J]. PNAS, 2013,110(1):82-86.
[32] YAO L, DANIELS J, WIJESINGHE D, et al. pHLIP® -mediated delivery of PEGylated liposomes to cancer cells[J]. J Controlled Release, 2013, 167(3):228-237.
[33] REJA R M, KHAN M, SINGH S K, et al. pH Sensitive coiled coils:a strategy for enhanced liposomal drug delivery[J]. Nannoscale, 2016, 8(9):5139-5145.
[34] WANG L, GENG D, SU H. Safe and efficient pH sensitive tumor targeting modified liposomes with minimal cytotoxicity[J]. Colloid Surface B, 2014, 123:395-402.
[35] HAMA S, ITAKURA S, NAKAI M, et al. Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry[J]. J Controlled Release, 2015, 206:67-74.
[36] JIANG T, ZHANG Z, ZHANG Y, et al. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery[J]. Biomaterials, 2012, 33(36):9246-9258.
[37] SU C, XIA Y, SUN J, et al. Liposomes physically coated with peptides:preparation and characterization[J]. Langmuirl, 2014, 30(21):6219-6227.
[38] DING Y, SUN D, WANG G L, et al. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery[J]. Int J Nanomed, 2015,10:6199-6214.
[39] SHI K, LI J, CAO Z, et al. A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin alphavbeta3 for the treatment of melanoma[J]. J Controlled Release, 2015, 217:138-150.
[40] KOREN E, APTE A, JANI A, et al. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity[J]. J Controlled Release, 2012, 160(2):264-273.
[41] LIU Y, LI L, QI G, et al. Dynamic disordering of liposomal cocktails and the spatio-temporal favorable release of cargoes to circumvent drug resistance[J]. Biomaterials, 2014, 35(10):3406-3415.
[42] HATAKEYAMA H, ITO E, AKITA H, et al. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo[J]. J Controlled Release, 2009,139(2):127-132.
[43] XIANG B, JIA X L, QI J L, et al. Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system[J]. Int J Nanomed, 2017,12:2385-2405.
[44] LI Y, LIU R, YANG J, et al. Dual sensitive and temporally controlled camptothecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy[J]. Biomaterials, 2014,35(36):9731-9745.
[45] YAO Y, SU Z, LIANG Y, et al. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery[J]. Int J Nannomed, 2015,10:6185-6198.
[46] ZHANG Q, RAN R, ZHANG L, et al. Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system[J]. J Controlled Release, 2015,197:208-218.

基金

国家自然科学基金青年科学基金项目资助(51403055)
PDF(1556 KB)

Accesses

Citation

Detail

段落导航
相关文章

/