目的 研究Pluronic L61修饰的聚丁二酸丁二醇酯(PBSu)载药纳米粒的制备及体外释放, 并评价纳米粒的细胞毒性, 为可生物降解PBSu材料在给药体系中的应用开辟途径。方法 通过乳化法制备L61-PBSu纳米粒, 以利福平为模型药物, 研究L61-PBSu纳米粒负载药物的体外释放, 并对药物释放进行动力学分析, 采用MTT染色法评价L61-PBSu纳米粒对人卵巢癌细胞(OVCAR-3)的细胞毒性。结果 纳米粒大小均匀, 载药后平均粒径在(140±7) nm。纳米粒能对药物进行有效包封, 包封率64.98%。累积释放率为90%时, 体外释放时间达到27 h, 药物释放机制遵循非Fick传输机制。纳米粒对OVCAR-3细胞毒性小, L61修饰后具有更低的细胞毒性。结论 L61-PBSu纳米粒制备简单, 生物相容性好, 对难溶性药物的缓释效果好, 是一种有前景的被动靶向载体新平台。
Abstract
OBJECTIVE To study the preparation of pluronic-modified biodegradable poly(butylene succinate) (PBSu) nanoparticles (NPs) and evaluate the release kinetics of the drug-loaded PBSu NPs and the cytotoxicity of the NPs, so as to provide a new platform for the application of biodegradable PBSu in drug delivery. METHODS Pluronic L61-modified PBSu NPs were prepared by emulsification method, and the morphology of the NPs was observed by transmission electron microscopy. The in vitro release kinetics of the rifampicin-loaded L61-PBSu NPs at 37 ℃ was studied. The cytotoxicity of the L61-PBSu NPs against human ovarian cancer cells (OVCAR-3) was evaluated by MTT assay. RESULTS The drug-loaded NPs had a unimodal distribution with an average size of (140±7) nm. The drug encapsulation efficiency attained 64.98%. The release time reached 27 h when the cumulative release percentage was 90%. The release kinetics followed non-Fickian mechanism. The NPs demonstrated very low cytotoxicity against OVCAR-3 cancer cells. Modification by L61 improved biocompatibility. CONCLUSION The Pluronic-modified PBSu NPs are easy to prepare, biocompatible, and show great promise as a new passive targeting platform for controlled release of insoluble drugs.
关键词
纳米粒 /
利福平 /
释放动力学 /
细胞毒性 /
可生物降解
{{custom_keyword}} /
Key words
nanoparticle /
rifampicin /
release kinetics /
cytotoxicity /
biodegradability
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHOU Q, LEUNG S S Y, TANG P, et al. Inhaled formulations and pulmonary drug delivery systems for respiratory infections[J]. Adv Drug Deliv Rev, 2015, 85: 83-99.
[2] CHOUDHARY S, DEVI V K. Potential of nanotechnology as a delivery platform against tuberculosis: current research review[J]. J Controlled Release, 2015, 202: 65-75.
[3] PHAM D D, FATTAL E, TSAPIS N. Pulmonary drug delivery systems for tuberculosis treatment[J]. Int J Pharm, 2015, 478(2):517-529.
[4] ZHAO P, SHI L, LIU Z L, et al. Preparation and in vitro release characteristics of rifampicin microspheres[J]. Chin Hosp Pharm J(中国医院药学杂志), 2014, 34(24): 2111-2116.
[5] PANDEY R, KHULLER G K. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model[J]. J Antimicrob Chemoth, 2006, 57(6):1146-1152.
[6] PAPADIMITRIOU S, PAPAGEORGIOU G Z, KANAZE F I, et al. Nanoencapsulation of nimodipine in novel biocompatible poly(propylene-co-butylene succinate) aliphatic copolyesters for sustained release[J]. J Nanomater, 2009, 2009: 716242.
[7] BEGE N, RENETTE T, JANSCH M, et al. Biodegradable poly(ethylene carbonate) nanoparticles as a promising drug delivery system with “stealth” potential[J]. Macromol Biosci, 2011, 11(7): 897-904.
[8] KUMARI A, YADAV S K, YADAV S C. Biodegradable polymeric nanoparticles based drug delivery systems[J]. Colloids Surfaces B: Biointerfaces, 2010, 75(1):1-18.
[9] SARKAR K, HU Y. Encapsulation and extended release of anti-cancer anastrozole by stealth nanoparticles[J]. Drug Deliv, 2008, 15(5):343-346.
[10] KAUR I P, SINGH H. Nanostructured drug delivery for better management of tuberculosis[J]. J Controlled Release, 2014, 184:36-50.
[11] BAIMARK Y, SRISUWAN Y. Biodegradable nanoparticles of methoxy poly(ethylene glycol)-b-poly(D, L-lactide)/methoxy poly(ethylene glycol)-b-poly(E-caprolactone) blends for drug delivery[J]. Nanoscale Res Lett, 2012, 7(1):271-278.
[12] IKADA Y, TSUJI H. Biodegradable polyesters for medical and ecological applications[J]. Macromol Rapid Commun, 2000, 21(3):117-132.
[13] YANG J, HAO Q H, LIU X Y, et al. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functionalizable carbonate building blocks.1. Chemical synthesis and their structural and physical characterization[J]. Biomacromolecules, 2004, 5(1):209-218.
[14] SHI F H. Synthesis, Characterization of poly(butylene succinate)s and fundamental research as novel biomaterials[D].Beijing: Technical Institute of Physics and Chemistry CAS, 2008.
[15] DUAN C E. The medical bio-security research of biodegradable material polybutylene succinate[D]. Beijing: Peking Union Medical College, 2013.
[16] LIU J, JIANG Z Z, ZHANG S M, et al. Poly(ω-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery[J]. Biomaterials, 2009, 30(29): 5707-5719.
[17] MOHANRAJ K, SETHURAMAN S, KRISHNAN U M. Development of poly(butylene succinate) microspheres for delivery of levodopa in the treatment of Parkinson′s disease[J]. J Biomed Mater Res B, 2013, 101(5): 840-847.
[18] LORENS E, IBAREZ H, DEL V L, et al. Biocompatibility and drug release behavior of scaffolds prepared by coaxial electrospinning of poly(butylene succinate) and polyethylene glycol[J]. Mater Sci Eng C, Mater Biol Appl, 2015, 49: 472-484.
[19] JAGER E, JAGER A, CHYTIL P, et al. Combination chemotherapy using core-shell nanoparticles through the self-assembly of HPMA-based copolymers and degradable polyester[J]. J Controlled Release, 2013, 165(2): 153-161.
[20] COUTINHO D F, PASHKULEVA I H, ALVES C M, et al. The effect of chitosan on the in vitro biological performance of chitosan-poly(butylene succinate) blends[J].Biomacromolecules, 2008, 9(4):1139-1145.
[21] PARINTORN H, ORAWAN S, PRASIT P. Effectual drug-releasing porous scaffolds from 1, 6-diisocyanatohexane-extended poly(1, 4-butylene succinate) for bone tissue regeneration[J]. Polymer, 2008, 49(11): 2678-2685.
[22] BRUNNER C T, BARAN E T, PINHO E D, et al. Performance of biodegradable microcapsules of poly (butylene succinate), poly(butylene succinate-co-adipate) and poly(butylene terephthalate-co-adipate) as drug encapsulation systems[J].Colloids Surf B, 2011, 84(2):498-507.
[23] WANG Y, LIU E G, SUN X Y, et al. Pluronic L61 as a long-circulating modifier for enhanced liposomal delivery of cancer drugs[J]. Polym Chem, 2013, 4(10): 2958-2962.
[24] DONG Y, ZHANG Z, FENG S S. d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) modified poly(l-lactide) (PLLA) films for localized delivery of paclitaxel[J]. Int J Pharm, 2008, 350(1):166-171.
[25] MOCKEL J E, LIPPOLD B C. Zero-order drug release from hydrocolloid matrices[J]. Pharm Res, 1993, 10(7): 1066-1070.
[26] SUBHEDAR D D, SHAIKH M H, SHINGATE B B, et al. Quinolidene-rhodanine conjugates: facile synthesis and biological evaluation[J]. Eur J Med Chem, 2017, 125: 385-399.
[27] ZHANG X, HU H M, LIU T B, et al. Multi-armed poly(L-glutamic acid)-graft-polypropyleneinime as effective and serum resistant gene delivery vectors[J]. Int J Pharm, 2014, 465(1): 444-454.
[28] ZHENG A P, CAO D Y, BI Y Q, et al. Evaluation of bioadhesion and toxicity of chitosan-coated insulin-loaded poly(lactide-co-glycolide) nanoparticles[J]. Chin Pharm J(中国药学杂志), 2010, 45(13): 1005-1010.
[29] WANG W X, HONG L, CAI T, et al. Synthesis and characterization of N-(N′, N′-dimethyl) propyl succinic mono-cholesteryl mono-amide as gene carrier[J]. Chin Pharm J(中国药学杂志), 2015, 50(12): 1032-1037.
[30] XU X, LI Y, LIU L, et al. Poly(glucono-δ-lactone) based nanocarriers as novel biodegradable drug delivery platforms[J]. Int J Pharm, 2017, 526(1-2):137-144.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(21674063); 浙江省自然科学基金资助项目(LY12E03001)
{{custom_fund}}