目的 制备粗毛豚草素脂质体,优化其处方并评价其体外抗肿瘤作用。方法 采用薄膜分散法制备粗毛豚草素脂质体,对脂质体的粒径、Zeta电位进行表征;并采用磺酰罗丹明B蛋白(SRB)法考察脂质体对A549细胞的抗增殖作用。结果 采用最优处方,制备的目标脂质体中粗毛豚草素的包封率为(87.06±0.6)%;平均粒径为(104.83±1.40)nm;Zeta电位为(-4.61±0.32)mV。制备得到的粗毛豚草素脂质体对A549细胞具有较强的抑制作用。结论 本实验组制备脂质体的方法简单易行,脂质体粒径均一,包封率较高且体外抗肿瘤作用较强。
Abstract
OBJECTIVE To study the preparing METHODS of hispidulin liposomes and evaluate their antitumor effects in vitro. METHODS Hispidulin liposomes were prepared by thin film dispersion method, and the formulation was further optimized. At the same time, the liposomes particle size and Zeta potential were characterized separately. The antiproliferative effect of the liposomes on A549 cells was investigated by sulforhodamine B(SRB) method. RESULTS According to the optimal prescription, the encapsulation efficiency of hispidulin liposomes was (87.06±0.67)%. Additionally, the average particle size was (104.83±1.40) nm and the Zeta potential was (-4.61±0.32) mV. Furthermore, the hispidulin liposomes exhibited the strongest inhibiting effect on A549 cells in vitro with comparison with control groups. CONCLUSION The preparation method builtin our research is easy. And the liposomes are well distributed with high encapsulation efficiency. Meanwhile, the hispidulin liposomes exhibit the most significant antitumor effects in vitro.
关键词
粗毛豚草素 /
脂质体 /
高效液相色谱法 /
处方优化 /
体外抗肿瘤
{{custom_keyword}} /
Key words
hispidulin /
liposomes /
HPLC /
process optimization /
antitumor effect in vitro
{{custom_keyword}} /
中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] INOUE M, SAWABATA N, OKUMURA M. Surgical intervention for small-cell lung cancer:what is the surgical role[J]. Gen Thor Cardiov Surg, 2012,60(7):401-405.
[2] HU Z W, SUN Y N, HUANG J H. Chemotherapy of advanced non-small cell lung cencer supplemented with lung cancer mixture[J]. Chin J Exp Tradit Med Form(中国实验方剂学杂志),2011,17(17):249.
[3] REN L, CHEN S, LI H, et al. MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction[J]. Acta Biomater, 2016, 35:260-268.
[4] CHEN X, YAN L X. Liposome pharmaceutics and its clinical application[J]. Tianjin Pharm(天津药学), 2000, l2(3):12-13.
[5] KAVVADIAS D, SAND P, YOUDIM K A, et al. The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects[J]. Br J Pharmacol, 2004, 142(5):811-820.
[6] TAN R X, LU H, WOLFENDER J L, et al. Mono-and sesquiterpenes and antifungal constituents from Artemisia species[J]. Planta Med, 1999, 65(1):64-67.
[7] NAGAO T, ABE F J, OKABE H. Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship[J]. Biol Pharm Bull, 2002, 25(7):875-879.
[8] CHEN Y T, ZHENG R L, JIA Z J, et al. Flavonoids as superoxide scavengers and antioxidants[J]. Free Radical Biol Med, 1990, 9(1):19-21.
[9] BOURDILLAT B, DELAUTIER D, LABAT C, et al. Mechanism of action of hispidulin, a natural flavone, on human platelets[J]. Prog Clin Biol Res, 1988, 280(280):211-214.
[10] NIU X, CHEN J, WANG P, et al. The effects of hispidulin on bupivacaine-induced neurotoxicity:role of AMPK signaling pathway[J]. Cell Biochem Biophy, 2014, 70(1):241-249.
[11] ZHOU R, WANG Z, MA C. Hispidulin exerts anti-osteoporotic activity in ovariectomized mice via activating AMPK signaling pathway[J]. Cell Biochem Biophy, 2014, 69(2):311-317.
[12] NEPAL M, CHOI H J, CHOI B Y, et al. Hispidulin attenuates bone resorption and osteoclastogenesis via the RANKL-induced NF-κB and NFATc1 pathways[J]. Eur J Pharmacol, 2013, 715(1-3):96-104.
[13] HE L, WU Y, LIN L, et al. Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathway[J]. Cancer Sci, 2011, 102(1):219-225.
[14] YU C Y, SU K Y, LEE P L, et al. Potential therapeutic role of hispidulin in gastric cancer through induction of apoptosis via NAG-1 signaling[J]. Evid Based Complement Alternat Med:eCAM, 2013, 2013(7):518301-518301.
[15] YANG J M, HUNG C M, FU C N, et al. Hispidulin sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by AMPK activation leading to Mcl-1 block in translation[J]. J Agricul Food Chem, 2010, 58(18):10020-10026.
[16] LIN Y C, HUNG C M, TSAI J C, et al. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK)[J]. J Agricul Food Chem, 2010, 58(17):9511-9517.
[17] LPEZPINTO J M, GONZLEZRODRGUEZ M L, RABASCO A M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes[J]. Int J Pharm, 2005, 298(298):1-12.
[18] XIA L. Research of the synergized action of the treatment on HER-2 over-expressing breast cancer cells using the combination of triterpenes components and paclitaxel[D]. Fuzhou:Fujian Medical University, 2014.
[19] ZHANG C J, DENG Y R. Inhibiting effects of hispidulin on lung carcinoma A-549 cell line[J]. Tianjin Med J(天津医药),2013,41(5):430-433.
[20] GAO H, WANG H, PENG J. Hispidulin induces apoptosis through mitochondrial dysfunction and inhibition of P13k/Akt signalling pathway in HepG2 cancer cells[J]. Cell Biochem Biophy, 2014, 69(1):27-34.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(81760421,81460540);新疆生产建设兵团社会发展科技攻关与成果转化计划资助项目(2015AD007)
{{custom_fund}}