新型固体分散体技术改善水难溶药物溶解度的研究进展

刘文利, 魏振平

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (22) : 1901-1906.

PDF(976 KB)
PDF(976 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (22) : 1901-1906. DOI: 10.11669/cpj.2016.22.001
综述

新型固体分散体技术改善水难溶药物溶解度的研究进展

  • 刘文利, 魏振平*
作者信息 +

Recent Progress on the Solubility Improvement for Poorly Water-Soluble Drugs by Forming Solid Dispersions with Novel Carriers and Advanced Techniques

  • LIU Wen-li, WEI Zhen-ping*
Author information +
文章历史 +

摘要

通过改善水难溶药物的溶解度来提高其溶出速率以及口服后的吸收和生物利用度,是开发此类药物的口服制剂所面临的一大挑战。相对于其他制剂技术,用固体分散技术改善水难溶药物的溶解度,简便易行而更有优势也更受到关注。在简要介绍固体分散体的特点基础上,笔者重点对近年来固体分散体制备中所用的新型载体材料和制备方法进行综述。介绍了两亲性聚合物:聚乙二醇羟基硬脂酸酯、聚乙烯己内酰胺-聚醋酸乙烯酯-聚乙二醇接枝共聚物、2-甲基丙烯酰乙氧基磷酰胆碱单体与甲基丙烯酸丁酯单体嵌段共聚物;还有无机材料:硅酸铝镁、介孔二氧化硅微粒和介孔碳酸镁,以及新型制备方法:超临界流体技术、高速静电纺丝和微环境pH修饰技术。

Abstract

To improve the in vitro dissolution and in vivo absorption as well as the bioavailability after oral administration by increasing the solubility with the formation of solid dispersion remains a great challenge for the oral dosage form design of poorly water-soluble drugs. Compared with the other pharmaceutical techniques in improving the solubility for poorly water-soluble drugs, priorities are usually given to solid dispersion for its manufacturing convenience. Following the characteristics introduction, we were focused this review on the novel carriers and advanced techniques used for preparing solid dispersions. Amphiphilic polymers used as novel solid dispersion carriers are Solutol HS 15, Soluplus and poly [MPC-co-BMA]. Inorganic materials like magnesium aluminum metasilicat, mesoporous silica microparticle and mesoporous magnesium carbonate are introduced together with the advanced solid dispersing techniques such as supercritical fluid technology, high speed electro-spinning and microenvironmental pH modified technology.

关键词

水难溶药物 / 固体分散体 / 溶解度 / 体外溶出度 / 新型载体材料 / 新型制备方法

Key words

poorly water-soluble drug / solid dispersion / solubility / in vitro dissolution / novel carriers / advanced technique

引用本文

导出引用
刘文利, 魏振平. 新型固体分散体技术改善水难溶药物溶解度的研究进展[J]. 中国药学杂志, 2016, 51(22): 1901-1906 https://doi.org/10.11669/cpj.2016.22.001
LIU Wen-li, WEI Zhen-ping. Recent Progress on the Solubility Improvement for Poorly Water-Soluble Drugs by Forming Solid Dispersions with Novel Carriers and Advanced Techniques[J]. Chinese Pharmaceutical Journal, 2016, 51(22): 1901-1906 https://doi.org/10.11669/cpj.2016.22.001
中图分类号: R944   

参考文献

[1] KU M S, DUBIN W. A biopharmaceutical classification-basedright-first-timeformulation approach to reduce human pharmacokinetic variability andproject cycle time from first-in-human to clinical proof-of-concept [J]. Pharm Dev Technol, 2010,17 (3):285-302.
[2] LIN C, CHEN F, YE T, et al. A novel oral delivery system consisting in drug-in cyclodextrin-in nanostructured lipid carriers for poorly water-soluble drug:vinpocetine [J]. Int J Pharm, 2014, 465 (1-2):90-96.
[3] MIYAKO Y, KHALEF N, MATSUZAKI K, et al. Solubility enhancement of hydrophobic compounds by cosolvents:role of solute hydrophobicity on the solubilization effect [J]. Int J Pharm, 2010, 393 (1-2):48-54.
[4] BEAULIEU P L, DE MARTE J, GAMEAU M, et al. A prodrug strategy for the oral delivery of a poorly soluble HCV NS5B thumb pocket 1 polymerase inhibitor using self-emulsifying drug delivery systems (SEDDS) [J]. Bioorg Med Chem Lett, 2015, 25 (2):210-215.
[5] FU Q, KOU L F, GONG C, et al. Relationship between dissolution and bioavailability for nimodipine colloidal dispersions:the critical size in improving bioavailability [J]. Int J Pharm, 2012, 427 (2):358-364.
[6] HINTZEN F, PERERA G, HAUPTSTEIN S, et al. In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin [J]. Int J Pharm, 2014, 29 (1-2):20-26.
[7] ELOY J O, MARCHETTI J M. Solid dispersions containing ursolic acid in Poloxamer 407 and PEG 6000: a comparative study of fusion and solvent methods [J]. Powder Technol, 2014, 253:98-106.
[8] CHIOU W L, RIEGELMAN S. Pharmaceutical applications of solid dispersion systems [J]. J Pharm Sci, 1971, 60 (9):1281-1302.
[9] VO C L, PARK C, LEE B J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs [J]. Eur J Pharm Biopharm, 2013, 85 (3):799-813.
[10] VASCONCELOS T, SARMENTO B, COSTA P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs [J]. Drug Discov Today, 2007, 12 (23-24):1068-1075.
[11] MURGIA S, FADDA P, COLAFEMMINA G, et al. Characterization of the Solutol?HS 15/water phase diagram and the impact of the Δ9-tetra-hydro- cannabinol solubilization [J]. J Colloid Interf Sci, 2013, 390(1):129-136.
[12] COON J S, KNUDSON W, CLODFELTER K, et al. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance [J]. Cancer Res, 1991, 51 (3):897-902.
[13] ALANI A W, RAO D A, SEIDEL R, et al. The effect of novel surfactants and Solutol? HS 15 on paclitaxel aqueous solubility and permeability across a Caco-2 monolayer [J]. J Pharm Sci, 2010, 99 (8):3473-3485.
[14] SEO S W, HAN H K, CHUN M K, et al. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol? HS15 as a carrier [J]. Int J Pharm, 2012, 424 (1-2):18-25.
[15] PUNCOCHOVá K, VUKOSAVLJEVIC B, HANU? J, et al. Non-invasive insight into the release mechanisms of a poorly soluble drug from amorphous solid dispersions by confocal Raman microscopy [J]. Eur J Pharm Biopharm, 2016, 101:119-125.
[16] GUTH F, SCHMELLER T, KOLTER K. Characterization Requirements for New Excipients [M]. France:The International Pharmaceutical Excipients Council Europe Annual Seminar, Cannes, 2011.
[17] HOMAYOUNI A, SADEGHI F, VARSHOSAZ J, et al. Promising dissolution enhancement effect of Soluplus on crystallized celecoxib obtained through antisolvent precipitation and high pressure homogenization techniques [J]. Colloid Surface B, 2014, 122:591-600.
[18] HARDUNG H, DJURIC D, ALI S. Combining HME & solubilization:soluplus?-the solid solution [J]. Drug Deliv Technol, 2010, 10 (3):20-27.
[19] LINN M, COLLNOT E M, DIURIC D, et al. Soluplus?as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo [J]. Eur J Pharm Sci, 2012, 45 (3):336-343.
[20] ZHANG K R, YU H X, LUO Q, et al. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension [J]. Eur J Pharm Biopharm, 2013, 85 (3):1285-1292.
[21] ONOUE S, SUZUKI H, KOJO Y, et al. Self-micellizing solid dispersion of cyclosporine A with improved dissolution and oral bioavailability[J]. Eur J Pharm Sci, 2014, 62:16-22.
[22] ONOUE S, KOJO Y, SUZUKI H, et al. Development of novel solid dispersion of tranilast using amphiphilic block copolymer for improved oral bioavailability [J]. Int J Pharm, 2013, 452 (1-2):220-226.
[23] MANIRUZZAMAN M, NAIR A, SCOUTARIS N, et al. One-step continuous extrusion process for the manufacturing of solid dispersions [J]. Int J Pharm, 2015, 496 (1):42-51.
[24] SHAH A, SERAJUDDIN A T M. Conversion of solid dispersion prepared by acid-base interaction into free-flowing and tabletable powder by using Neusilin?US2 [J]. Int J Pharm, 2015, 484 (1-2):172-180.
[25] HU Y, ZHI Z, ZHAO Q, et al. 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol [J]. Micropor Mesopor Mat, 2012, 147 (1):94-101.
[26] THOMAS M J K, SLIPPER I, WALUNJ A, et al. Inclusion of poorly soluble drugs in highly ordered mesoporous silica nanoparticles [J]. Int J Pharm, 2009, 387 (1-2):272-277.
[27] WANG Z H, CHEN B, QUAN G, et al. Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica [J]. Int J Nanomed, 2012, 7:5807-5818.
[28] LI J, MIAO X Q, CHEN T K, et al. Preparation and characterization of pelletized solid dispersion of resveratrol with mesoporous silica microparticles to improve dissolution by fluid-bed coating techniques [J]. Asian J Pharm Sci, 2015, doi:10.1016/j.ajps.2015.10.030.
[29] ZHANG P, FORSGREN J, STR?MME M. Stabilisation of amorphous ibuprofen in Upsalite, a mesoporous magnesium carbonate, as an approach to increasing the aqueous solubility of poorly soluble drugs [J]. Int J Pharm, 2014, 472 (1-2):185-191.
[30] YASUJI T, TAKEUCHI H, KAWASHIMA Y. Particle design of poorly water-soluble drug substances using supercritical fluid technologies [J]. Adv Drug Deliv Rev, 2008, 60 (3):388-398.
[31] CHEN A Z, LI Y, CHAU F T, et al. Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO2 to prepare puerarin fine particles [J]. J Supercrit Fluid, 2009, 49 (3):394-402.
[32] DE ZORDI N, MONEGHINI M, KIKIC I, et al. Applications of supercritical fluids to enhance the dissolution behaviors of Furosemide by generation of microparticles and solid dispersions [J]. Eur J Pharm Biopharm, 2012, 81 (1):131-141.
[33] ADELI E. A comparative evaluation between utilizing SAS supercritical fluid technique and solvent evaporation method in preparation of Azithromycin solid dispersions for dissolution rate enhancement [J]. J Supercrit Fluid, 2014, 87:9-21.
[34] YU D G, HU M H, ZHOU W, et al. Electrospun ketoprofen sustained release nanofibers prepared using coaxial electrospinning[J]. Appl Mech Mater, 2013, 395-396:138-143.
[35] NAGY Z K, BALOGH A, DéMUTH B, et al. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole [J]. Int J Pharm, 2015, 480 (1-2):137-142.
[36] DéMUTH B, FARKAS A, PATAKI H, et al. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning [J]. Int J Pharm, 2016, 498 (1-2):234-244.
[37] BASSI P, KAUR G. pH modulation:a mechanism to obtain pH-independent drug release [J]. Expert Opin Drug Del, 2010, 7 (7):845-857.
[38] YANG M Y, HE S L, FAN Y Z, et al. Microenvironmental pH-modified solid dispersions to enhance the dissolution and bioavailability of poorly water-soluble weakly basic GT0918, a developing anti-prostate cancer drug:preparation, characterization and evaluation in vivo [J]. Int J Pharm, 2014, 475 (1-2):97-109.
[39] MARASINI N, TRAN T H, POUDEL B K, et al. Fabrication and evaluation of pH-modulated solid dispersion for telmisartan by spray-drying technique [J]. Int J Pharm, 2013, 441 (1-2):424-432.

基金

天津市自然科学基金资助项目(14JCYBJC29100)
PDF(976 KB)

Accesses

Citation

Detail

段落导航
相关文章

/