Progress in the Mechanism of Blood-Brain Barrier Dysfunction in Diabetic Complications
YANG Huan, CHENG Xiao, WANG Yue-hua*, DU Guan-hua*
Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
Abstract��Diabetes mellitus is closely related to the central nervous system (CNS) diseases, and it is now evident that blood-brain barrier (BBB) dysfunction plays a significant role in diabetes-dependent CNS disorders, such as stroke, vascular dementia, cognitive deficits, etc. Changes in plasma glucose levels (hyper- or hypoglycemia) have been associated with altered BBB transport functions (e.g., glucose, amino acids, etc.), the integrity of BBB, and oxidative stress in the CNS microvascular. However, the underlying causes of diabetes-induced CNS complications are multifactorial and are relatively little understood. This review focuses on the major findings and current knowledge with regard to the impact of diabetes on BBB integrity and function to explore the new research area and the new drug targets for treatment of diabetic dependent CNS complications.
�, ��Ц, ���»�, �Źڻ�. ������֢��Ѫ�����Ϲ������˻����о���չ[J]. �й�ҩѧ��־, 2016, 51(2): 86-90.
YANG Huan, CHENG Xiao, WANG Yue-hua, DU Guan-hua. Progress in the Mechanism of Blood-Brain Barrier Dysfunction in Diabetic Complications. Chinese Pharmaceutical Journal, 2016, 51(2): 86-90.
BROWNLEE M. Biochemistry and molecular cell biology of diabetic complications . Nature, 2001, 414(6865): 813-820.
[2]
KOOK S Y, HONG H S, MOON M, et al. A��1-42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling . Neuroscience, 2012, 32(26): 8845-8854.
[3]
WAN W, CHEN H, LI Y. The potential mechanisms of A��-receptor for advanced glycation end-products interaction disrupting tight junctions of the blood-brain barrier in Alzheimer��s disease . Int J Neurosci, 2014, 124(2): 75-81.
[4]
PRASAD S, SAJJA R K, NAIK P, et al. Diabetes mellitus and blood-brain barrier dysfunction: an overview . J Pharmacovigil, 2014, 2(2): 125.
[5]
EMMI A, WENZEL H J, SCHWARTZKROIN P A, et al. Do glia have heart? Expression and functional role for ether-a-go-go currents in hippocampal astrocytes . J Neurosci, 2000, 20(10): 3915-3925.
[6]
DAVSON H, SEGAL M B. Physiology of the CSF and Blood-Brain Barriers. Boca Raton: CRC Press, 1996.
[7]
NAIK P, CUCULLO L. In vitro blood-brain barrier models: Current and perspective technologies. J Pharm Sci, 2012, 101(4): 1337-1354.
[8]
CASTANEDA-SCEPPA C, CASTANEDA F. Sodium-dependent glucose transporter protein as a potential therapeutic target for improving glycemic control in diabetes . Nutr Rev, 2011, 69(12): 720-729.
[9]
AUGUSTIN R. The protein family of glucose transport facilitators: It��s not only about glucose after all. IUBMB Life, 2010, 62(5): 315-333.
[10]
BRICKMANN K. The expanding phenotype of GLUT1-deficiency syndrome . Brain Dev, 2009, 31(7): 545-552.
[11]
VEMULA S, RODER K E, YANG T, et al. A functional role for sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation . J Pharmacol Exp Ther, 2009, 328(2): 487-495.
[12]
LEYBAERT L, DE B M, VAN M M, et al. Neurobarrier coupling in the brain: Adjusting glucose entry with demand . J Neurosci Res, 2007, 85(15): 3213-3220.
[13]
DUELLI R, KUSCHINSKY W. Brain glucose transporters: Relationship to local energy demand . Physiology, 2001, 16(2): 71-76.
[14]
CORNFORD E M, HYMAN S. Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy . Neuro Rx, 2005, 2(1): 27-43.
[15]
WEKSLER B B, SUBILEAU E A, PERRIERE N, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line . FASEB J, 2005, 19(13): 1872-1874.
[16]
BINGHAM E M, HOPKINS D, SMITH D, et al. The role of insulin in human brain glucose metabolism an 18-fluoro-deoxyglucose positron emission tomography study . Diabetes, 2002, 51(12): 3384-3390.
[17]
LARON Z. Insulin and the brain . Arch Phys Biochem, 2009, 115(2): 112-116.
[18]
BANKS W A, JASPAN J B, HUANG W, et al. Transport of insulin across the blood-brain barrier: Saturability at euglycemic doses of insulin . Peptides, 1997, 18(9): 1423-1429.
[19]
LI X H, LV B L, XIE J Z, et al. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation . Neurobiol Aging, 2012, 33(7): 1400-1410.
[20]
THOMAS M C, SODERLUND J, LEHTO M, et al. Soluble receptor for AGE (RAGE) is a novel independent predictor of all-cause and cardiovascular mortality in type 1 diabetes . Diabetologia, 2011, 54(10): 2669-2677.
[21]
FUJISAWA K, KATAKAMI N, KANETO H, et al. Circulating soluble RAGE as a predictive biomarker of cardiovascular event risk in patients with type 2 diabetes . Atherosclerosis, 2013, 227(2): 425-428.
[22]
HOU W K, XIAN Y X, ZHANG L, et al. Influence of blood glucose on the expression of glucose trans-porter proteins 1 and 3 in the brain of diabetic rats . Chin Med J(�л�ҽѧ��־), 2007, 120(19): 1704-1709.
[23]
NIELSEN J K, DJUEHUUS C B, GRAVHOLT C H, et al. Continuous glucose monitoring in interstitial subcutaneous adipose tissue and skeletal muscle reflects excursions in cerebral cortex . Diabetes, 2005, 54(6): 1635-1639.
[24]
BADR G A, TANG J, ISMAIL-BEIGI F, et al. Diabetes downregulates GLUT1 expression in the retina and its microvessels but not in the cerebral cortex or its microvessels . Diabetes, 2000, 49(6): 1016-1021.
[25]
CRYER P E. Mechanisms of hypoglycemia-associated autonomic failure in diabetes . New Engl J Med, 2013, 369(4): 362-372.
[26]
CRIEGO A B, TKAC I, KUMAR A, et al. Brain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness . J Neurosci Res, 2005, 79(1-2): 42-47.
[27]
SEGEL S A, FANELLI C G, DENCE C S, et al. Blood-to-brain glucose transport, cerebral glucose metabolism, and cerebral blood flow are not increased after hypoglycemia . Diabetes, 2001, 50(8): 1911-1917.
[28]
KUMAGAI A K, KANG Y S, BOADO R J, et al. Upregulation of blood-brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes, 1995, 44(12): 1399-1404.
[29]
LEI H, GRUETTER R. Effect of chronic hypoglycaemia on glucose concentration and glycogen content in rat brain: A localized 13C-NMR study . J Neurochem, 2006, 99(1): 260-268.
[30]
MASTAITIS J W, WURMBACH E, CHENG H, et al. Acute induction of gene expression in brain and liver by insulin-induced hypoglycemia . Diabetes, 2005, 54(4): 952-958.
[31]
HAWKINS R A, PETERSON D R, VINA J R. The complementary membranes forming the blood-brain barrier . IUBMB Life, 2002, 54(3): 101-107.
[32]
HAWKINS R A, O��KANE R L, SIMPSON I A, et al. Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr, 2006, 136(1): 218-226.
[33]
MELDRUM B S. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology . J Nutr, 2000, 130(4): 1007-1015.
[34]
CASTILLO J, DAVALOS A, NAVEIRO J, et al. Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke, 1996, 27(6): 1060-1065.
[35]
O��KANE R L, MARTNEZ-LOPEZ I, DEJOSEPH M R, et al. Na+-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier a mechanism for glutamate removal . J Biol Chem, 1999, 274(45): 31891-31895.
[36]
MOORADIAN A D. Blood-brain barrier choline transport is reduced in diabetic rats . Diabetes, 1987, 36(10): 1094-1097.
[37]
HUBER J D, VANGILDER R L, HOUSER K A. Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats . Am J Physiol-Heart C, 2006, 291(6): 2660-2668.
[38]
ALLEN C L, BAYRAKTUTAN U. Antioxidants attenuate hyperglycaemia-mediated brain endothelial cell dysfunction and blood-brain barrier hyperpermeability. Diabetes Obes Metab, 2009, 11(5): 480-490.
[39]
WANG J, LI G, WANG Z, et al. High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes . Neuroscience, 2012, 202: 58-68.
[40]
BALL K K, HARIK L, GANDHI G K, et al. Reduced gap junctional communication among astrocytes in experimental diabetes: Contributions of altered connexin protein levels and oxidative-nitrosative modifications . J Neurosci Res, 2011, 89(12): 2052-2067.
[41]
GANDHI G K, BALL K K, CRUZ N F, et al. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes . ASN Neuro, 2010, 2(2): AN20090048.
[42]
SHIMIZU F, SANO Y, TOMINAGA O, et al. Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-�� by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol Aging, 2013, 34(7): 1902-1912.
[43]
ARGAW A T, GURFEIN B T, ZHANG Y, et al. VEGF-Mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown . Proc Natl Acad Sci, 2009, 106(6): 1977-1982.
[44]
VORBRODT A W, DOBROGOWSKA D H, TARNAWSKI M, et al. Immunogold study of altered expression of some interendothelial junctional molecules in the brain blood microvessels of diabetic scrapie-infected mice . J Mol Histol, 2006, 37(1-2): 27-35.
[45]
YAN J, ZHANG Z, SHI H. HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells . Cell Mol Life Sci, 2012, 69(1): 115-128.
[46]
CHEHADE J M, HAAS M J, MOORADIAN A D. Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression . Neurochem Res, 2002, 27(3): 249-252.
[47]
ENNIS S R, KEEP R F. Effect of sustained-mild and transient-severe hyperglycemia on ischemia-induced blood-brain barrier opening . J Cerebr Blood F Met, 2007, 27(9): 1573-1582.
[48]
ERGUL A, ELGEBALY M M, MIDDLEMORE M L, et al. Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes . BMC Neurol, 2007, 7(1): 33.
[49]
VAVILALA M S, RICHARDS T L, ROBERTS J S, et al. Change in blood-brain barrier permeability during pediatric diabetic ketoacidosis treatment . Pediatric Critical Care Medicine, 2010, 11(3): 332-338.
[50]
HOFFMAN W H, STAMATOVIC S M, ANDJELKOVIC A V. Inflammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis . Brain Res, 2009, 1254: 138-148.
[51]
MINAMIZONO A, TOMI M, HOSOYA K. Inhibition of dehydroascorbic acid transport across the rat blood-retinal and blood-brain barriers in experimental diabetes. Biol Pharma Bull, 2006, 29(10): 2148-2150.
[52]
LIU H, LIU X, JIA L, et al. Insulin therapy restores impaired function and expression of P-glycoprotein in blood-brain barrier of experimental diabetes. Biochem Pharmacol, 2008, 75(8): 1649-1658.
[53]
PRAKASH R, JOHNSON M, FAGAN S C, et al. Cerebral neovascularization and remodeling patterns in two different models of type 2 diabetes . PLoS One, 2013, 8(2): e56264.
[54]
GIACCO F, BROWNLEE M. Oxidative stress and diabetic complications . Circ Res, 2010, 107(9): 1058-1070.
[55]
TAKAHASHI S, ABE T, IZAWA Y, et al. Effects of fluctuating glucose concentrations on oxidative metabolism of glucose in cultured neurons and astroglia . J Diabetes Mellitus, 2012, 2: 19-26.
[56]
HAORAH J, RAMIREZ S H, SCHALL K, et al. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J Neurochem, 2007, 101(2): 566-576.
[57]
TAKAHASHI S, IZAWA Y, SUZUKI N. Astroglial pentose phosphate pathway rates in response to high-glucose environments . ASN Neuro, 2012, 4(2): AN20120002.
[58]
CIPOLLA M J, HUANG Q, SWEET J G. Inhibition of protein kinase C�� reverses increased blood-brain barrier permeability during hyperglycemic stroke and prevents edema formation in vivo. Stroke, 2011, 42(11): 3252-3257.
[59]
BYUN K, BAYARSAIKHAN E, KIM D, et al. Activated microglial cells synthesize and secrete AGE-albumin . Ana Cell Biol, 2012, 45(1): 47-52.
[60]
LYONS T J, BASU A. Biomarkers in diabetes: Hemoglobin A1c, vascular and tissue markers . Transl Res, 2012, 159(4): 303-312.