摘要
目的 采用1H-NMR定量地测定单甲氧基聚乙二醇-聚乳酸-羟基乙酸共聚物纳米粒(MePEG-PLGA-NP) 表面单甲氧基聚乙二醇(MePEG)的含量及链密度,并研究了不同相对分子质量及不同比例的单甲氧基聚乙二醇对单甲氧基聚乙二醇-聚乳酸-羟基乙酸共聚物纳米粒表面的物理化学性质影响。方法 以单甲氧基聚乙二醇-聚乳酸-羟基乙酸共聚物(MePEG-PLGA)为载体,自乳化溶剂扩散法制备了聚乙二醇化聚乳酸-羟基乙酸纳米粒,并对其平均粒径和Zeta电位进行表征。1H-NMR用于确定单甲氧基聚乙二醇-聚乳酸-羟基乙酸的结构组成并测定了单甲氧基聚乙二醇-聚乳酸-羟基乙酸共聚物纳米粒表面的单甲氧基聚乙二醇的含量及链密度,并与比色法进行比较。结果 单甲氧基聚乙二醇-聚乳酸-羟基乙酸共聚物共聚物的结构组成与标示量基本一致;聚乙二醇的相对分子质量相同时,随着单甲氧基聚乙二醇比例的增加,单甲氧基聚乙二醇-聚乳酸-羟基乙酸共聚物纳米粒的平均粒径逐渐减小,Zeta电位的绝对值也逐渐减小,粒子表面的单甲氧基聚乙二醇含量(α)逐渐增加,其表面单甲氧基聚乙二醇的链密度(δ)逐渐增大,相邻两单甲氧基聚乙二醇分子链间的距离(D)逐渐减小;相同比例,随着单甲氧基聚乙二醇链长度的增加,单甲氧基聚乙二醇-聚乳酸-羟基乙酸共聚物纳米粒的平均粒径与Zeta电位都无明显差别,而α逐渐增加,δ逐渐减小,D逐渐增大;同种单甲氧基聚乙二醇-聚乳酸-羟基乙酸共聚物纳米粒,比色法测定的α值比1H-NMR测定的值偏高。结论 1H-NMR能够定量地测定单甲氧基聚乙二醇-聚乳酸-羟基乙酸共聚物纳米粒表面的单甲氧基聚乙二醇含量及链密度;与比色法相比,1H-NMR测定的粒子表面单甲氧基聚乙二醇的含量更准确;实验范围内,单甲氧基聚乙二醇的相对分子质量和比例可以对纳米粒的平均粒径,Zeta电位和表面单甲氧基聚乙二醇含量及链密度等物理化学性质产生影响。
关键词
聚乳酸-羟基乙酸共聚物 /
单甲氧基聚乙二醇 /
纳米粒 /
核磁共振法 /
链密度
{{custom_keyword}} /
Key words
poly( lactic acid-hydroxyl acid) copolymer /
methoxy polyethylene glycol /
nanoparticles /
Nuclear magnetic resonance method /
chain density
{{custom_keyword}} /
王俊腾,谢鑫鑫,秦利芳,林东海.
1H-NMR法测定单甲氧基聚乙二醇-聚乳酸-羟基乙酸共聚物纳米粒的表面单甲氧基聚乙二醇含量及链密度[J]. 中国药学杂志, 2012, 47(16): 1302-1306
The Study of MePEG Content and Chain Density on MePEG-PLGA-NP Surface with 1H-NMR Method[J]. Chinese Pharmaceutical Journal, 2012, 47(16): 1302-1306
中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DUAN Y R, ZHANG Z R,TANG Y G. Preparation and degradation behavior of mPEG-PLGA-mPEG nanoparticles[J]. J Biomed Eng,2004, 21(6):921-925.
[2] JI D Y,WU J S,PING Q N. Synthesis of PLA-mPEG and preparation of docetaxel polymermicelles[J]. J China Pharm Univ(中国药科大学学报), 2008,39 (3):223 - 227.
[3] YANG S A. Long-circulating Mechanism of MePEG-PLGA Nanoparticles and Properties of TNF-α Blocking Peptide Loaded Nanoparticles[D]. WuHan,Huazhong University of Science and Technology,2009.
[4] HEALD C R,STOLNIK S,KUJAWINSKI K S,et al. Poly(lactic acid)-Poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona[J]. Langmuir,2002,18 (9):3669- 3675.
[5] VILA A,GILL H,MCCALLION O,et al. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density[J]. J Controlled Release,2004,98 :231-244.
[6] JIANG H,WANG Q,JIANG N,et al. Quantitative determination of iminodibenzyl By 1H-NMR[J]. J Xuzhou NormaI Univ (Nat Sci Ed)(徐州师范大学学报:自然科学版),2009,27(1):77-79.
[7] PERACCHIA M T,VAUTHIER C,PASSIRANI C,et al. Complement consumption by poly ( ethylene glycol) in different conformations chemically coup led to poly ( isobutyl 2-cyanoacrylate )nanoparticles[J]. Life Sci,1997,61 (7) :749-761.
[8] GREF R,LUCK M,QUELLEC P,et al. ‘Stealth’ Corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption[J]. Colloids and Surfaces B: Biointerfaces,2000,18:301-313.
[9] BR IGGER I,CHAMINADE P,DESMAELE D,et al. Near infrared with principal component analysis as a novel analytical approach for nanoparticle technology[J]. Pharm Res,2000,17(9) :1124-1132.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(30973949);山东省自然科学基金资助项目(ZR2009CM012)
{{custom_fund}}