肿瘤血管的靶向给药系统

王坚成 张强

中国药学杂志 ›› 2010, Vol. 45 ›› Issue (23) : 1804-1809.

PDF(749 KB)
PDF(749 KB)
中国药学杂志 ›› 2010, Vol. 45 ›› Issue (23) : 1804-1809.
综 述

肿瘤血管的靶向给药系统

  • 王坚成,张强
作者信息 +
文章历史 +

摘要

目的 综述以新生血管为靶标的各种受体介导的抗肿瘤靶向给药系统的研究进展。方法 查阅国内外有关文献资料,从肿瘤血管的生成、结构特点、血管内皮细胞上的靶标以及各种受体介导的肿瘤血管靶向给药系统等最新研究进展进行较为详细的阐述,并针对肿瘤血管内皮细胞受体介导的各种新型靶向给药系统的研究发展过程中面临的问题和对策进行了探讨。结果结论 绝大部分肿瘤的生长和转移都依赖于新生血管的形成。肿瘤新生血管内皮细胞表面有大量过度表达的特异性受体,如血管生成因子受体、整合素等。近几年来,针对肿瘤血管的受体介导的靶向药物输送系统研究正在蓬勃开展,并且已经展现出良好的肿瘤治疗效果。新生血管靶向给药将逐渐成为肿瘤治疗过程中非常有前景的一种治疗策略。

关键词

新生血管 / 受体介导 / 靶向输送 / 抗肿瘤 / 给药系统

引用本文

导出引用
王坚成 张强. 肿瘤血管的靶向给药系统[J]. 中国药学杂志, 2010, 45(23): 1804-1809

参考文献


[1] FOLKMAN J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 285: 1182-1186.
[2] FOLKMAN J. Tumor angiogenesis[J]. Adv Cancer Res,1985,43:175-203.
[3] LI H, LU H, GRISEELLJ L, et al. Adenovirus mediated delivery of a uPA/uPAR antagonist suppressed angiogenesis-dependent tumor growth and dissemination in mice[J]. Gene Therapy, 1998, 5: 1105-1113.
[4] BROOKS P C, RICHARD A F C, CHERESH D A. Requirement of vascular integrin ανβ3 for angiogenesis[J]. Science,1994,264:569-571.
[5] PATAN S. Tie l and Tie 2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by mechanism of intussusceptive microvascular growth[J]. Microvasc Res,1998, 56:1-21.
[6] WONG A L,HARON Z A,WERNER S. Tie2 expression and phospharylation in angiogenic and quiscent adult tissues[J].Circ Res,1997,81: 567-574.
[7] HANAHAN D. Signaling vascular morphogenesis and maintenance[J].Science,1997, 277(5322):48-50.
[8] YANCOPOULOS G D,KLAGSBRUN M, FOLKMAN J. Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border[J].Cell, 1998, 93: 661-664.
[9] SCHWEIGERER L,NEUFELD G,FRIEDMAN J. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth[J]. Nature,1987, 325:257.
[10] FERRARA N, DAVIS S T. The biology of vascular endothelial growth factor[J]. Endoc Rev,1997, 18(1): 4-25.
[11] BROWN L F, BERSE B, JACKMAN R W, et al. Expression of vascular permeability factor(vascular endothelial growth factor) and its receptors in adenccarcinoma of gastrointestinal tract[J]. Cancer Res, 1993, 53: 4727-4735.
[12] BREKKEN R A, OVCRHOLSER J E, STASMY V A, et al. Selective inhibitionofvascular endothelial growthfactor(VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growthinmice[J]. Cancer Res,2000,60: 5117-5124.
[13] PATAN S. Tie l and Tie 2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by mechanism of intussusceptive microvascular growth[J]. Microvasc Res,1998, 56:1-21.
[14] BROOKS P, MONTGOMERY A, ROSENFELD M, et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels[J]. Cell, 1994, 79(7):1157-1164.
[15] BROOKS P C, SILLETTI S, VON SCHALSCHA T L, et al. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity[J]. Cell, 1998,92(3):391-400.
[16] VAN HENSBERGEN Y, BROXTERMAN H J, HANEMAAIJER R, et al. Soluble aminopeptidase N/CD13 in malignant and nonmalignant effusions and intratumoral fluid[J]. Clin Cancer Res, 2002, 8(12): 3747-3754.
[17] XIONG X B, HUANG Y, LU W L, et al. Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo[J]. J Pharm Sci, 2005, 94(8): 1782-1793.
[18] XIONG X B, HUANG Y, LU W L, et al. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic[J]. J Controlled Release, 2005, 107(2): 262-275.
[19] ZHAO H, WANG J C, SUN Q S. RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted withhuman ovarian cancer[J]. J Drug Target, 2009, 17(1):10-18.
[20] ABRA R M, BANKERT R B, CHEN F, et al. The next generation of liposome delivery systems: recent experience with tumor-targeted, sterically-stabilized immunoliposomes and active-loading gradients[J]. J Liposome Res,2002,12(1-2):1-3.
[21] SCHIFFELERS R M, KONING G A, TEN HAGEN T L, et al. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin[J]. J Controlled Release, 2003, 91(1-2):115-122.
[22] DAI W, YANG T, WANG X, et al. PHSCNK-Modified anddoxorubicin-loaded liposomes as a dual targeting system to integrin-overexpressing tumor neovasculature and tumor cells[J]. J Drug Target, 2010, 18(4):254-263.
[23] ZHANG Y F, WANG J C, BIAN D Y, et al. Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: in vitro and in vivo studies[J]. Eur J Pharm Biopharm, 2010,74(3):467-473.
[24] PATTILLO C B, SARI-SARRAF F, NALLAMOTHU R, et al. Targeting of the antivascular drug combretastatin to irradiated tumors results in tumor growth delay[J]. Pharm Res, 2005, 22(7):1117-1120.
[25] JIANG J, YANG S J, WANG J C, et al. Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin[J]. Eur J Pharm Biopharm, 2010, 76(2):170-178.
[26] BIBBY D C, TALMADGE J E, DALAL M K, et al. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice[J]. Int J Pharm,2005, 293(1-2):281-290.
[27] DANHIER F, VROMAN B, LECOUTURIER N, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel[J]. J Controlled Release,2009, 140(2):166-173.
[28] CHEN K, XIE J, XU H, et al. Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting[J]. Biomaterials, 2009, 30(36):6912-6919.
[29] XIONG X B, MAHMUD A, ULUDAG H, et al. Conjugation of arginine-glycine-aspartic acid peptides to poly (ethylene oxide)-b-poly (ε-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells[J]. Biomacromolecules, 2007, 8(3):874-884.
[30] WOODLE M C, SCARIA P, GANESHB S, et al. Sterically stabilized polyplex: ligand mediated activity[J]. J Controlled Release, 2001, 74(1-3):309-311.
[31] NASONGKLA N, SHUAI X T, AI H, et al. cRGD-Functionalized polymer micelles for targeted doxorubicin delivery[J]. Angew Chem Int Edit, 2004,43(46):6323-6327.
[32] NASONGKLA N, BEY E, REN J M, et al. Multifunctional polymeric micelles as cencer-targeted, MRI-ultrasensitive drug delivery systems[J]. Nano Lett, 2006,6:2427-2430.
[33] ZHAN C, GU B, XIE C, et al. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect[J]. J Controlled Release, 2010,143(1):136-42.
[34] ARAP W, PASQUALINI R, RUOSLAHTI E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model[J]. Science, 1998,279(5349):377-380.
[35] SCHRAA A J, KOK R J, BERENDSEN A D, et al. Endothelial cells internalize and degrade RGD-modified proteins developed for tumor vasculature targeting[J]. J Controlled Release,2002,83(2):241-251.
[36] LINE B R, MITRA A, NAN A, et al. Targeting tumor angiogenesis:comparison of peptide and polymer-peptide conjugates[J]. J Nucl Med, 2005,46(9):1552-1560.
[37] JANSSEN A P, SCHIFFELERS R M, TEN HAGEN T L, et al. Peptide-targeted PEG-liposomes in anti-angiogenic therapy[J]. Int J Pharm,2003,254(1):55-58.
[38] GAO Y, CHEN L, GU W, et al. Targeted nanoassembly loaded with docetaxel improves intracellular drug delivery and efficacy in murine breast cancer model[J]. Mo Pharmaceutics,2008,5 (6):1044-1054.
[39] YU D H, LU Q, XIE J, et al. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature[J]. Biomaterials,2010,31(8):2278-2292.
[40] ARAP W, PASQUALINI R, RUOSLAHTI E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model[J]. Science,1998, 279(5349): 377-380.
[41] MAJHEN D, GABRILOVAC J, ELOIT M, et al. Disulfide bond formation in NGR fiber-modified adenovirus is essential for retargeting to aminopeptidase N [J]. Biochem Biophys Res Commun, 2006,348(1): 278-287.
[42] ELLERBY H M, ARAP W, ELLERBY L M, et al. Anti-cancer activity of targeted pro-apoptotic peptides [J]. Nat Med, 1999, 5(9): 1032-1038.
[43] CURNIS F, SACCHI A, BORGNA L, et al. Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13) [J]. Nat Biotechnol,2000, 18(11): 1185-1190.
[44] WANG X, WANG Y, CHEN X, et al. NGR-modified micelles enhance their interaction with CD13-overexpressing tumor and endothelial cells[J]. J Controlled Release, 2009, 139(1):56-62.
[45] NEGUSSIE A H, MILLER J L, REDDY G, et al. Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome[J]. J Controlled Release, 2010, 143(2):265-273.
[46] MAI J, SONG S, RUI M,et al. A synthetic peptide mediated active targeting of cisplatin liposomes to Tie2 expressing cells [J]. J Controlled Release, 2009, 139(3):174-181.
[47] CHEN X, WANG X, WANG Y, et al. Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide[J]. J Controlled Release, 2010, 145(1):17-25.
[48] HATAKEYAMA H, AKITA H, ISHIDA E, et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes[J]. Int J Pharm, 2007,342(1-2):194-200.
[49] JAIN R K. Normalization of tumor vaculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307(5706): 58- 62.
PDF(749 KB)

Accesses

Citation

Detail

段落导航
相关文章

/