目的 应用 Caco-2 细胞模型对卡莫氟 ( carmofur , 1-hexylcarbamoyl-5-fluorouracil , HCFU ) 的吸收、转运特性及其机制进行研究。 方法 分别考察时间、 pH 、浓度及抑制剂对 HCFU 吸收的影响;测定药物在不同时间双向转运的速度,计算 HCFU 的表观渗透系数,研究不同药物浓度对其转运的影响。 结果 Caco-2 细胞对 HCFU 的吸收在 20 min 内呈线性,药物摄取时间定为 10 min ; pH 对 HCFU 的吸收没有显著影响,浓度依赖性结果显示, HCFU 的吸收由一个饱和成分和一个非饱和成分组成; P- 糖蛋白( P-glycoprotein , P-gp )抑制剂维拉帕米对 HCFU 的吸收基本没有影响,而耐药相关性蛋白( MRP )抑制剂 MK571 的存在可显著增加对 HCFU 的吸收( P <0.05 )。双向转运的表观渗透性存在方向性差异,且受浓度的影响。 结论 HCFU 在 Caco-2 细胞中以主动和被动 2 种形式吸收,其吸收存在外排机制, MRP2 可能对 HCFU 的吸收有外排作用。
Abstract
OBJECTIVE To investigate the uptake, transepithelial transport characteristics and the cellular uptake mechanism of carmofur,1-hexylcarbamoyl-5-fluorouracil(HCFU) in the Caco-2 cells model. METHODS The uptake studies of HCFU were investigated through the time(1, 2, 5, 10, 20 min), pH (6.5, 7.4) and concentration(0~300 mmol·L-1) dependence assays. The cellular uptake mechanism of HCFU was determined with the P-gp inhibitor of verapamil and the MRP inhibitor of MK571. The transepithelial transport was measured using Caco-2 cell monolayers grown in Transwell chambers at different time(30, 60, 90, 120 min) and concentrations(25, 100 mmol·L-1), and the permeability was calculated. RESULTS The uptake of HCFU in Caco-2 cells showed a linear range in 20 min and the uptake time was fixed at 10 min. No significant pH-dependent influnce was observed in Caco-2 cells. The concentration-dependent uptake of HCFU consisted of one saturable and one nonsaturable component. Verapamil(100 mmol·L-1) almost had no effect on the uptake of HCFU, and MK571(50 mmol·L-1) increased the uptake significantly(P<0.05). The permeability showed directional different(P<0.05), Papp(BL→AP)/Papp(AP→BL) was 1.7 and the Papp(BL→AP) decreased significantly(P<0.05) with increasing concentration. CONCLUSION The absorption of HCFU in Caco-2 cells model included active and passitive manner, involved in efflux transport, and MRP2 maybe play an important role in the efflux of HCFU in Caco-2 cells.
关键词
卡莫氟 /
Caco-2 细胞模型 /
吸收 /
转运
{{custom_keyword}} /
Key words
carmofur /
Caco-2 cells model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] IWAGAKI H, TANAKA N, ESATO K, et al. Randomized controlled trial of 5-fluorouracil (5-FU) infusion combined with 1-hexylcarbamoyl-5-fluorouracil (HCFU) oral administration and HCFU alone as postoperative adjuvant chemotherapy for colorectal cancer [J] . Anticancer Res, 2000, 20(5C):3727-3734.
[2] ITO K , YAMAGUCHI A , MIURA K, et al. Oral adjuvant chemotherapy with carmofur (HCFU) for colorectal cancer: five-year follow-up. Tokai HCFU Study Group--third study on colorectal cancer [J] . J Surg Oncol , 1996, 63(2):107-111.
[3] SHSH P, JOGANI V, BAGCHI T, <>et al. Role of Caco-2 cell monolayers in experimental and theoretical predictions of drug transport[J]. <>Biotechnol Prog, 2006, 22(1): 186-198.
[4] ARTURSSON P, PALM K, LUTHMAN K. Caco-2 monolayers in experimental and theoretical predictions of drug transport[J]. <>Adv Drug Deliv Rev, 2001, 46(1-3): 27-43.
[5] LAMPEN A, BADER A, BESTMANN T, et al. Catalytic activities, protein- and mRNA-expression of cytochrome P450 isoenzymes in intestinal cell lines [J]. Xenobiotica, 1998, 28(5): 429-441.
[6] ARTURSSON P, KARLSSON J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) c ells [J]. Biochem Biophys Res Commun , 1991, 175(3): 880-885.
[7] YEE S Y. <>In vitro permeability across Caco-2 cells ( colonic) can predict <>in vivo ( small intestinal) absorption in man-fact or myth [J]. Pharm Res, 1997, 14(6): 763-766.
[8] KAMATH A V, DARLING I M, MORRIS M E. Choline uptake in human intestinal Caco-2 cells is carrier-mediated[J]. J Nutr, 2003, 133 (8) : 2607-2611.
[9] HIROSHI M, TOSHIYAKATURA K, HIDEYUKI S, et al. Transport characteristics of diphenhydramine in human intestinal epithelial Caco-2 Cells: contribution of pH-dependent transport system[J]. J Pharmacol Exp Ther , 1999, 290(1):388-392.
[10] WIEBKE F, LINDA M, KATHRIN H, et al. Substrate specificity and mechanism of the intestinal clonidine uptake by Caco-2 cells[J]. Pharm Res, 2006, 23(1):131-137.
[11] YIN H, KIYOMI I, YASUYKI T, et al. Mechanism of intestinal absorption of an orally active beta-Lactam prodrug: uptake and transport of carindacillin in Caco-2 cells [J]. J Pharmacol Exp Ther, 1999, 290(3): 958-964.
[12] MCCLOUD E, MA T, GRANT K, et al. Uptake of L-carnitine by a human intestinal epithelial cell line, Caco- 2 [J]. <>Gastroenterology, 1996, 111( 6):1534-1540.
[13] BHARDWAJ R K, HERRERA-RUIZ D, SINKO P J, et al. Delineation of human peptide transporter 1 (hPepT1 )-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells[J]. J Pharmacol Exp Ther, 2005,314(3):1093-1100.
[14] PAULI-MAGNUS C, VON RICHTER O, BURK O, et al. Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein[J]. J Pharmacol Exp Ther, 2000, 293(2):376-382.
[15] JIA J X, WASAN K M. Effects of monoglycerides on rhodamine 123 accumulation, estradiol 17 beta-D-glucuronide bidirectional transport and MRP2 protein expression within Caco-2 cells [J] . J Pharm Pharm Sci, 2008,11(3):45-62.
( 收稿日期 : 2009-02-17 )
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}