[1] MANG M, QI Y. Recent progress in Caco-2 cell model and its application in drug absorption [J]. Chin Pharm J ( 中国药学杂志 ) ,2007,42(16): 1201-1204. [2] ME′NEZ C, BUYSE M, DUGAVE C, et al. Intestinal absorption of miltefosine: contribution of passive paracellular transport [J] . Pharm Res, 2007,24(3):546-554. [3] HUANG C R, WANG G J, WU X L, et al. Absorption enhancement study of astragaloside IV based on its transport mechanism in Caco-2 cells [J]. Eur J Drug Metab Pharmacokinet, 2006,31(1):5-10. [4] XIE H T, WANG G J, ZHAO X C, et al. Study on uptake and metabolism of ginsenoside Rg3[J]. Chin J Clin Pharmacol Ther ( 中国临床药理学与治疗学 ) , 2004,9 ( 3 ): 257-260. [5] WANG S J , WANG G J , LI X T, et al. Study on transport of sophocarpine in millicell system by LC-MS [J]. China J Chin Mater Med ( 中国中药杂志 ) , 2007,32(1 ):57-60. [6] MA L, WANG Y, YANG X W. Absorption of dictamnine and skimmianine across human intestinal epithelial in a model of Caco-2 cell monolayers [J]. Chin J New Drugs ( 中国新药杂志 ) , 2008,17( 2):124-128. [7] WANG G, LI Q Y, FANG Q L, et al. Uptake and transport of hydroxysafflor yellow A in Caco-2 cell monolayer [J]. Chin Pharm J ( 中国药学杂志 ) , 2009, 44(5): 353-357. [8] CHOI J S, JIN M J, HAN H K. Role of monocarboxylic acid transporters in the cellular uptake of NSAIDs[J]. J Pharm Pharmacol, 2005, 57(9) :1185-1189. [9] LI Y H, ITO K, TSUDA Y, et al . Mechanism of intestinal absorption of an orally active β-Lactam prodrug: uptake and transport of carindacillin in Caco-2 cells [J] . J Pharmacol Exp Ther, 1999, 290 (3):958-964. [10] KONISHI Y, HAGIWARA K, SHIMIZU M. Transepithelial transport of fluorescein in Caco-2 cell monolayers and use of such transport in <>in vitro evaluation of phenolic acid availability[J]. Biosci Biotechnol Biochem, 2002, 66 (11): 2449-2457. [11] MIZUUCHI H, KATSURA T, HASHIMOTO Y, et al . Transepithelial transport of diphenhydramine across monolayers of the human intestinal epithelial cell line Caco-2 [J] . Pharm Res, 2000, 17(5): 39-545. [12] NISHIMURA N, NAORA K, UEMURA T, et al. Transepithelial permeation of tolbutamide across the human intestinal cell line, Caco-2[J]. Drug Metab Pharmacokin, 2004, 19(1) :48-54. [13] MATSUMOTO S, SAITO H, INIU K. Transport characteristics of ceftibten, a new cephalosporin antibiotic, via the apical H+/dipeptide cotransport system in human intestinal cell line Caco-2: Regulation by cell growth [J] . Pharm Res, 1995, 12(10) :1483-1487. [14] BERGER V, BREMAEKER N D, LARONDELLE Y, et al. Transport mechanisms of the imino acid L-proline in the human intestinal epithelial Caco-2 cell line[J]. J Nutr, 2000, 130(11) :2772-2779. [15] ROIG-PEREZ S, MORETO M, FERRER R. Transepithelial taurine transport in Caco-2 cell monolayers[J]. J Membrance Biol, 2005, 204(2) :85-92. [16] HO S Y, STORCH J. Common mechanisms of monoacylglycerol and fatty acid uptake by human intestinal Caco-2 cells[J] . Am J Physiol Cell Physiol, 2001, 281(4): 1106-1117. [17] WALGREN R A, LIN J, KINNE R, et al . Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1[J]. J Pharmacol Exp Ther, 2000, 294(3):837-843. [18] PETRI N, TANNERGREN C, RUNGSTAD D, et al . Transport characteristics of fexofenadine in the Caco-2 cell model [J] . Pharm Res, 2004, 21(8) :1398-1404. [19] SCHRICKX J, FINK-GREMMELS J. P-glycoprotein-mediated transport of oxytetracycline in the Caco-2 cell model [J] . J Vet Pharmacol Therap, 2007, 30(1) :25-31. [20] HE Y, ZENG S. Transport characteristics of rutin deca (H-) sulfonate sodium across Caco-2 cell monolayers [J] . J Pharm Pharmacol, 2005, 57(10) :1297-1303. [21] TIAN X J, YANG X D, WANG K, et al . The efflux of flavonoids morin, isorhamnetin-3-<>O-rutinoside and diosmetin-7-<>O-b-<>D- xylopyranosyl-(1-6) -b-<>D-glucopyranoside in the human intestinal cell line Caco-2 [J] . Pharm Res, 2006, 23(8) :1721-1728. [22] WALGREN R A , KARNAKY K J , LINDENMAYER G E, et al . Efflux of dietary flavonoid quercetin 4??? ¢ -β-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance associated protein[J]. J Pharmacol Exp Ther, 2000 ,294(3) :830-836. [23] BRAND W, VAN DER WEL P A, REIN M J, et al. Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers[J]. Drug Metab Dispos, 2008,36(9):1794-1802. [24] LI H, JIN H E, KIM W, et al. Involvement of P-glycoprotein, multidrug resistance protein 2 and breast cancer resistance protein in the transport of belotecan and topotecan in Caco-2 and MDCKII cells[J]. Pharm Res, 2008 ,25(11):2601-2612. [25] VAIDYANATHAN J B, WALLE T. Cellular uptake and efflux of the tea flavonoid (-)-epicatechin-3-gallate in the human Intestinal cell line Caco-2[J]. J Pharmacol Exp Ther, 2003,307(2):745-752. [26] SHA X Y, FANG X L, WU Y J. The <>in vitro kinetics of uptake , transport and efflux of 9-nitrocamptothecin in Caco-2 cell model[J]. Acta Pharm Sin ( 药学学报 ), 2004,9(10):839-843. [27] WU X C, WHITFIELD L R, STEWART B H. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter [J] . Pharm Res, 2000, 17(2) :209-215. [28] WATANABE K, SAWANO T, ENDO T, et al . Studies on intestinal absorption of sulpiride (2): transepithelial transport of sulpiride across the human intestinal cell line Caco-2 [J] . Biol Pharm Bull, 2002, 25(10) :1345-1350. [29] FAGERHOLM U. Prediction of human pharmacokinetics- gastrointestinal absorption[J]. J Pharm Pharmacol, 2007 ,59(7): 905-916. [30] CAI R L, WANG M, QI Y, et al. Selection and utilization on the evaluation criterions of Caco-2 cell model [J]. Chin Pharm J ( 中国药学杂志 ) ,2008,43(24):1871-1875. [31] WATERBEEMD H V D, LENNERNAS H, ARTURSSON P. <>Drug Bioavailability [M]. Weinheim : Wiley-VCH Verlag GmbH & Co. KgaA, 2003:58-73. ( 收稿日期 : 2009-02-13 )