摘要
目的综述脂质促进药物经肠淋巴转运的机制及动物模型和影响因素。方法查阅近几年的有关文献,进行整理和归纳。结果与结论脂质促进药物经肠淋巴转运机制的逐步阐明、相关模型的建立及影响因素的确定为开展药物经肠淋巴转运研究奠定了基础。
关键词
脂质 /
肠淋巴转运
{{custom_keyword}} /
柴旭煜;陶涛.
脂质促进药物经肠淋巴转运的研究进展[J]. 中国药学杂志, 2008, 43(22): 1681-1684
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] POUTON C W.Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system[J] . Eur J Pharm Sci,2006,29(3-4): 278-287.
[2] POTER C J H,CHARMAN W N. Uptake of drugs into the intestinal lymphatics after oral administration[J] . Adv Drug Deliv Rev,1997,25(1): 71-89.
[3] POTER C J H,CHARMAN W N. Intestinal lymphatic drug transport: an update[J] . Adv Drug Deliv Rev,2001,50(1-2): 61-80.
[4] O′DRISCOLL C M. Lipid-based formulations for intestinal lymphatic delivery[J] . Eur J Pharm Sci,2002,15(5): 405-415.
[5] EDWARDS G A,POTER C J H,CALIPH S M,et al. Animal models for the study of intestinal lymphatic drug transport[J] . Adv Drug Deliv Rev,2001,50(1-2): 45-60.
[6] MU H L,HY C E. The digestion of dietary triacylglycerols[J] . Prog Lipid Res,2004,43(2):105-133.
[7] CHARMAN W N,PORTER C J H,MITHANI S,et al. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH[J] . J Pharm Sci,1997,86(3):269-282.
[8] SEEBALLUCK F,ASHFORD M B,O′DRISCOLL C M. Copolymers and Cremophor EL on intestinal lipoprotein processing and the potential link with P-glycoprotein in Caco-2 cells[J] . Pharm Res,2003,20(7): 1085-1092.
[9] SEEBALLUCK F,LAWLESS E,ASHFORD M B,et al. Stimulation of triglyceride-rich lipoprotein secretion by polysorbate: in vitro and in vivo correlation using Caco-2 cells and cannulated rat intestinal lymphatic model[J] . Pharm Res,2004,21(12): 2320-2326.
[10] KARPF D M,HOLM R,GARAFALO C,et al. Effect of different surfactants in biorelevant medium on the secretion of a lipophilic compound in lipoproteins using Caco-2 cell culture[J] . J Pharm Sci,2006,95(1): 45-55.
[11] LANGHEIM S,YU L,VON BERQMANN K,et al. ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile[J] . J Lipid Res,2005,46(8): 1732-1738.
[12] POTER C J H,CHARMAN S A,CHARMAN W N. Lymphatic transport of halofantrine in the triple-cannulated anesthetized rat model: effect of lipid vehicle dispersion[J] . J Pharm Sci,1996,85(4):351-356.
[13] BOYD M,RISOVIC V,JULL P,et al. A stepwise surgical procedure to investigate the lymphatic transport of lipid-based oral drug formulations: cannulation of the mesenteric and thoracic lymph ducts within the rat[J] . J Pharmacol Toxicol Methods,2004,49(2):115-120.
[14] POTER C J H,CHARMAN S A,HUMBERSTONE A J,et al. Lymphatic transport of Halofantrine in the conscious rat when administered as either the free base or the hydrochloride salt: effect of lipid class and lipid vehicle dispersion[J] . J Pharm Sci,1996,85(4):357-361.
[15] HAUSS D,FOGAL S,FICORILLI J. Chronic collection of mesenteric lymph from conscious,tethered rats[J] . Contemp Tropics Lab Anim Sci,1998,37(3): 56-58.
[16] DAHAN A,HOFFMAN A. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs[J] . Eur J Pharm Sci,2005,24(4):381-388.
[17] WHITE D G,STORY M J,BARNWELL S G. An experimental animal model for studying the effects of a novel lymphatic drug delivery system for propranolol[J] . Int J Pharm,1991,69(2):139-174.
[18] KHOO S M,EDWARDS G A,POTER C J H,et al. A conscious dog model for assessing the absorption,enterocyte-based metabolism,and intestinal lymphatic transport of halofantrine[J] . J Pharm Sci,2001,90(10): 1599-1607.
[19] LESPINE A,CHANOIT G,MELOU B A,et al. Contribution of lymphatic transport to the systemic exposure of orally administered moxidectin in conscious lymph duct-cannulated dogs[J] . Eur J Pharm Sci,2006,27(1): 37-43.
[20] YOSHIKAWA H,TAKADA K,MURANISHI S. Molecular wei- ght dependence of permselectivity to rat small intestinal blood-lymph barrier for exogenous macromolecules absorbed from lumen[J] . J Pharmacobiodyn,1984,7(1): 1-6.
[21] HOLM R,HOEST J. Successful in silico predicting of intestinal lymphatic transfer [J] . Int J Pharm,2004,272(1-2): 189-193.
[22] CHARMAN W N,STELLA V J. Estimating the maximal potential for intestinal lymphatic of lipophilic drug molecules[J] . Int J Pharm,1986,34(1-2): 175-178.
[23] DE SMIDT P C,CAMPANERO M A,TROCNIZ I F. Intestinal absorption of penclomedine from lipid vehicles in the conscious rat: contribution of emulsification versus digestibility[J] . Int J Pharm,2004,270(1-2): 109-118.
[24] GERSHKOVICH P,HOFFMAN A. Uptake of lipophilic drugs by plasma derived isolated chylomicrons: linear correlation with intestinal lymphatic bioavailability[J] . Eur J Pharm Sci,2005,26(5): 394-404.
[25] KHOO S M,SHACKLEFORD D M,PORTER C J H,et al. Intestinal lymphatic transport of Halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs[J] . Pharm Res,2003,20(9): 1460-1465.
[26] CALIPH S M,CHARMAN W N,POTER C J H. Effect of short-,medium-,and long-chain fatty acid-based vehicles on absolute oral bioavailability and intestinal lymphatic transport of Halofantrine and assessment mass balance in lymph-cannulated and non-cannulated rats[J] . J Pharm Sci,2000,89(8): 1073-1084.
[27] HOLM R,M LLERTZ A,PEDERSEN G P,et al. Comparison of the lymphatic transport of Halofantrine administered in disperse systems containing three different unsaturated fatty acids[J] . Pharm Res,2001,18(9): 1299-1304.
[28] HOLM R,PORTER C J H,EDWARDS G A,et al. Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems(SMEDDS) containing structured triglycerides[J] . Eur J Pharm Sci,2006,20 (1):91-97.
[29] HOLM R,PORSGARD T,POTER C J H,et al. Lymphatic fatty acids in canine dosed with pharmaceutical formulations containing structured triacylglycerols[J] . Eur J Lipid Sci Technol,2006,108(9): 714-722.
[30] HAUSS D J,FOGAL S E,FLCORILL J V,et al. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor[J] . J Pharm Sci,1998,87(2): 164-169.
[31] IWANAGA K,KUSHIBIKI T,MIYAZAKI M,et al. Disposition of lipid-based formulation in the intestinal tract affects the absorption of poorly water-soluble drugs[J] . Biol Pharm Bull,2006,29(3): 508-512.
[32] LING S S N,MAGOSSO E,KARIM N,et al. Enhanced oral bioavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes[J] . Drug Dev Ind Pharm,2006,32(3): 335-345.
[33] BARGONI A,CAVALLI R,CAPUTO O,et al. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats[J] . Pharm Res,1998,15(5): 745-750.
[34] CAVALLI R,BARGONI A,PODIO V,et al. Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin[J] . J Pharm Sci,2003,92(5): 1085-1094.
[35] ZHANG J M,HU F Q,YING X Y,et al. Studies on insulin-loaded stearylamine nanoparticles: preparation and physicochemical properties[J] . Chin Pharm J(中国药学杂志),2004,39(8):605-607.
[36] GRIFFIN B T,O′DRISCOLL C M. A comparison of intestinal lymphatic transport and systemic bioavailability of saquinavir from three lipid-based formulations in the anaesthetized rat model[J] . J Pharm Pharmacol,2006,58(7): 917-925.
[37] HUSSAIN N,JAITLEY V,FLORENCE A T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics[J] . Adv Drug Deliv Rev,2001,50(1-2): 107-172.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}