摘要
目的制备一种新型具有抗凝血活性的肝素铁纳米粒。方法通过Fe3+与肝素复合的方法制备出肝素铁纳米粒;通过激光粒度仪(DLS)、Zeta电位仪、扫描力显微镜(SFM)、傅立叶红外光谱(FT-IR)分析了肝素铁纳米粒的粒径分布、表面电位、粒子形态及偶联关系;通过甲苯胺蓝染色法测定了制备过程中剩余肝素浓度来计算肝素铁纳米粒中肝素含量;通过活化部分凝血激酶时间(APTT)的方法测定肝素铁纳米粒的抗凝血活性。结果Fe3+与肝素按不同比例复合可制备出粒径在(139.0~219.9)nm、Zeta电位在(-22.5~-36.5)mV的纳米粒;红外光谱显示,肝素的硫酸基团与铁离子发生了离子复合作用;Fe3+与肝素按不同比例复合制备出的纳米粒中肝素含量在29.5%~33.1%,抗凝血活性在43.2~46.5u·mg-1。结论Fe3+与肝素复合的方法可制备出一种新型具有抗凝血活性的肝素铁纳米粒。
Abstract
OBJECTIVE The aim of current study was to prepare and characterize novel iron heparin nanoparticles.METHODS Iron heparin nanopaticles were obtained through ionic complexation between Fe3+ and heparin.Iron heparin nanoparticles were characterized using dynamic light scattering(DLS),Zeta potential,scanning force microscopy(SFM) and fourier infrared spectroscopy(FT-IR).The content of heparin of iron heparin nanoparticles were determined by toluidine blue heparin assay.The anticoagulant activity of iron heparin nanoparticles were tested by activated partial thromboplastin time(APTT) assay.RESULTS Size(139.0-219.9) nm and Zeta potential(-22.5——36.5) mV of iron heparin nanoparticles were conveniently modulated by varying ratio of Fe3+ and heparin.IR result showed Fe3+ interacted with O-sulphate groups.The content of heparin of iron heparin nanoparicles were in range of 29.5%-33.1% and anticoagulant activity of iron heparin nanoparicles were in range of 43.2~46.5 u·mg-1 by varying ratio of Fe3+ and heparin.CONCLUSION Novel anticoagulant iron heparin nanoparticles were fabricated by using only complexation of Fe3+ and heparin.
关键词
肝素 /
抗凝血 /
药物 /
纳米粒
{{custom_keyword}} /
Key words
heparin /
anticoagulants /
drugs /
nanoparticles
{{custom_keyword}} /
于路;高艳光;付华;刘萌;刘绍琴;戴志飞.
新型抗凝血肝素铁纳米粒的制备及性质研究[J]. 中国药学杂志, 2008, 43(20): 1535-1537
YU Lu;GO Yn-gung;FU Hu;LIU Meng;LIU Sho-qin;DI Zhi-fei.
Preparation and Characterization of Novel Anticoagulant Iron Heparin Nanopariticles [J]. Chinese Pharmaceutical Journal, 2008, 43(20): 1535-1537
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HIRSH J,WARKENTIN T E,RASCHKE R,et al. Heparin and low-molecular-weight-heparin [J] .Chest,1998,114(5):489-510.
[2] GU J,YANG J,ZHANG C Y,et al. Compare of mulecule characteristics and bioactivity of low molecular weight heparin products in market[J] .Chin Pharm J(中国药学杂志),2007,42(6):461-465.
[3] HIRSH J, ANAND S S, HALPERIN J L, et al. Guide to anti- coagulant therapy:heparin a statement for healthcare professionals from the American heart association[J] . Circulation,2001,103(24):2994-3018.
[4] MCAVOY T J. The biologic half-life of heparin [J] .Clin Pharmacol Ther,1979,25(3):372-379.
[5] PETITOU M,HERAULT J P,BERNAT A,et al. Synthesis of thrombin-inhibiting heparin mimetics without side effects[J] . Nature,1999,398(6726):417-422.
[6] MENG L,XIULI Y,ZHIFEI D,et al. Stabilized hemocompatible coating of nitinol devices based on Photo-Cross-Linked Alginate/Heparin Multilayer[J] .Lanbmuir,2007,23(18):9378-9385.
[7] GRANT D,LONG W F,WILLIAMSON F B. Infrared spectro scopy of heparin-cation complexes[J] . Biochem J,1987,244(1):143-149.
[8] MOGHIMI S M,HUNTER A C,MURRAY J C. Long-circulating and target-specific nanoparticles:theory to practice[J] . Pharmacol Rev,2001,53(2):283-318.
[9] SIPOS P,BERKESI O,TOMBACZ E,et al. Formation of sph-erical iron(Ⅲ) oxyhydroxide nanoparticles sterically stabilized by chitosan in aqueous solutions[J] .J Inorg Biochem,2003,95(1):55-63.
[10] LEVER R,PAGE C P. Novel drug development opportunities for heparin[J] .Nat Rev Drug Discov,2002,1(2):140-148.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
教育部高等学校科技创新工程重大项目培育资助项目(707021);新世纪优秀人才支持计划(NCET-05-0335)
{{custom_fund}}