摘要
目的研究肝移植术后患者的细胞色素P4503A5酶(CYP3A5)和多药耐药蛋白(MDR1)基因多态性对他克莫司浓度/剂量比的影响。方法记录患者的体重、他克莫司剂量和血药浓度等指标,采用聚合酶链式反应-限制性内切片段长度多态性(PCR-RFLP)方法对肝移植患者进行基因分型,比较不同基因型患者之间他克莫司的浓度/剂量比。结果CYP3A5*1/*1和*1/*3型患者的他克莫司浓度/剂量比明显低于*3/*3型患者(P<0.01),MDR1的3435和2677位点各基因型分组之间无明显差异(P>0.05)。结论CYP3A5基因*3多态性与他克莫司血药浓度/剂量比具有显著相关性,*1/*1和*1/*3型的患者拟取得相似的血药浓度要比*3/*3型患者服用更高剂量的他克莫司,用药前检测基因型可以更有效地对他克莫司进行剂量调整。
Abstract
OBJECTIVE To investigate the effect of CYP3A5 and MDR1 on the concentration/dose ratio of tacrolimus in Chinese liver transplant patients. METHODS Blood samples were collected from liver transplant patients who received tacrolimus . The CYP3A5 and MDR1 genotypes were determined by PCR-RFLP method. Tacrolimus tough concentration was measured by FPIA. The concentration/dose ratio was determined at 7,14 d and 1 month after liver transplantation. RESULTS The concentration/dose ratios of patients with CYP3A5*1/*1 and CYP3A5 *1/*3 carrier were significantly lower than those with CYP3A5*3*3 patients at 7,14 d and 1 month after liver transplantation. No difference was found among the MDR1 genotypes. CONCLUSION CYP3A5 *3 polymorphism is correlated with the whole blood concentration/dose ratio in Chinese liver transplant patients. Clinical application of pharmacogenetic studies will be significant for the individualization of tacrolimus dosage.
关键词
肝移植 /
他克莫司 /
细胞色素P4503A5酶 /
多药耐药蛋白
{{custom_keyword}} /
Key words
liver transplantation /
tacrolimus /
CYP3A5 /
MDR1 /
polymorphism
{{custom_keyword}} /
金昭;张伟霞;陈冰;茅安炜;陈皓;顾志东c;蔡卫民.
CYP3A5和MDR1基因多态性与肝移植病人他克莫司浓度/剂量比的关系[J]. 中国药学杂志, 2008, 43(09): 649-653
JIN Zho;ZHNG Wei-xi;CHEN ing;MO n-wei;CHEN Ho;GU Zhi-dongc;CI Wei-min.
Effect of CYP3A5 and MDR1 Gene Polymorphism on Concentration/Dose Ratios of Tacrolimus in Chinese Liver Transplant Patients [J]. Chinese Pharmaceutical Journal, 2008, 43(09): 649-653
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HUANG W,LIN Y S,MCCONN D J,et al. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism[J] . Drug Metab Dispos,2004,32(12): 1434-1445.
[2] KAMDEM L K,STREIT F,ZANGER U M,et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus[J] . Clini Chem,2005,51(8): 1374-1381.
[3] KIM R B,LEAKE B F,CHOO E F,et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans[J] . Clin Pharmacol Ther,2001,70(2): 189-199.
[4] SAKAEDA T,NAKAMURA T,OKUMURA K. Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs[J] . Pharmacogenomics,2003,4(4): 397-410.
[5] HOFFMEYER S,BURK O,VON RICHTER O,et al. Functional polymorphisms of the human multidrug-resistance gene:multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo[J] . Proc Natl Acad Sci USA,2000, 97(7):3473-3478.
[6] HU Y F,HE J,CHEN G L,et al. CYP3A5*3 and CYP3A4*18 single nucleotide polymorphisms in a Chinese population[J] . Clini Chim Acta,2005,353(1-2): 187-192.
[7] VENKATARAMANAN R,SWAMINATHAN A,PRASAD T,et al. Clinical pharmacokinetics of tacrolimus[J] . Clin Pharmacokinet,1995,29(6): 404-430.
[8] WALLEMACQ P E, VERBEEDK R K. Comparative clinical pharmacokinetics of tacrolimus in paediatric and adult patients[J] . Clin Pharmacokinet,2001,40(4): 283-295.
[9] MANCINELLI L M, FRASSETTO L, FLOREN L C, et al. The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups[J] . Clin Pharmacol Ther,2001,69(1): 24-31.
[10] KUEHL P,ZHANG J,LIN Y,et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression[J] . Nat Genet,2001,27(4):383-391.
[11] SIMPSON D,NOBLE S. Tacrolimus ointment: a review of its use in atopic dermatitis and its clinical potential in other inflammatory skin conditions[J] . Drugs,2005,65(6):827-858.
[12] ZHENG H,ZEEVI A,SCHUETZ E,et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism[J] . J Clin Pharmacol,2004,44(2): 135-140.
[13] ZHANG X,LIU Z,ZHENG J M,et al. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation[J] . Clin Transplant,2005,19(5): 638-643.
[14] ZHENG H,WEBBER S,ZEEVI A,et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms[J] . Am J Transplant,2003,3(4): 477-483.
[15] FUKUDO M, YANO I, MASUDA S, et al. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients[J] . Clin Pharmacol Ther,2006,80(4): 331-345.
[16] GOTO M,MASUDA S,KIUCHI T,et al. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation[J] . Pharmacogenetics,2004,14(7): 471-478.
[17] UESUGI M, MASUDA S, KATSURA T,et al. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients[J] . Pharmacogenet Genomics,2006,16(2): 119-127.
[18] YU S F,WU L H,JIN J,et al. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation[J] . Transplantation,2006,81(1): 46-51.
[19] WANG W L, JIN J, ZHENG S S,et al. Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients[J] . Liver Transplantation,2006,12(5):775-780.
[20] MASUDA S, GOTO M, OKUDA M,et al. Initial dosage adjustment for oral administration of tacrolimus using the intestinal MDR1 level in living-donor liver transplant recipients[J] . Transplant Proc,2005,37(4): 1728-1729
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目(30500626)
{{custom_fund}}