建立具有药物代谢酶CYP2C9活性的微生物模型

杨秀伟;黄海华;张鹏;林立红;钟大放

中国药学杂志 ›› 2006, Vol. 41 ›› Issue (07) : 551-555.

中国药学杂志 ›› 2006, Vol. 41 ›› Issue (07) : 551-555.
论著

建立具有药物代谢酶CYP2C9活性的微生物模型

  • 杨秀伟;黄海华a,;张鹏b;林立红a;钟大放b
作者信息 +

Establishment of a Microbial Model with the Activity of Drug-Metabolizing Enzyme CYP2C9

  • YANG Xiu-wei2,HUANG Hai-hua1a,2*, ZHANG Peng1b,LIN Li-hong1a,ZHONG Da-fang1b
Author information +
文章历史 +

摘要

目的研究短刺小克银汉霉AS 3.910体外模拟人体细胞色素P450(CYP)2C9的能力,建立具有CYP2C9活性的微生物模型。方法选用3种人体CYP2C9代谢的药物格列本脲、双氯芬酸和吲哚美辛为底物,利用液相色谱-质谱联用技术检测药物代谢产物的种类和转化率。结果通过调节转化培养基的种类和初始pH,使转化系统在较高底物浓度下具有良好的转化效果,格列本脲、双氯芬酸和吲哚美辛总转化率分别为90%,100%和83%,而且形成的主要转化产物与人体CYP2C9产生的主要代谢产物相同。结论短刺小克银汉霉AS 3.910具有CYP2C9代谢酶活性,是研究人体CYP2C9药物代谢适宜的体外模型。

Abstract

OBJECTIVE To investigate the ability of Cunninghamella blakesleana AS 3.910 to mimic cytochrome P450(CYP) 2C9 in human,and build the microbial model of CYP2C9.METHODS Three drugs metabolized by CYP2C9(gliburide,diclofenac and indomethacin) were used as substrates.Their metabolites and transformation yields were detected by liquid chromatography-mass spectrometry.RESULTS The microbial system reached high transformation levels by changing the medium and original pH.Glyburide,diclofenac and indomethacin were transformed by C.blakesleana AS 3.910,with a total transformation ratio of 90%,100% and 83%,respectively.Their major metablites were same as that in human.CONCLUSION Cunninghamella blakesleana AS 3.910 could be used as a suitable microbial model for CYP2C9.

关键词

短刺小克银汉霉AS3.910 / 微生物转化 / 液相色谱-质谱 / 格列本脲 / 双氯芬酸 / 吲哚美辛

Key words

Cunninghamella blakesleana AS 3.910 / microbial transformation / liquid chromatography multistage mass spectrometry / glyburide / diclofenac / indomethacin

引用本文

导出引用
杨秀伟;黄海华;张鹏;林立红;钟大放. 建立具有药物代谢酶CYP2C9活性的微生物模型[J]. 中国药学杂志, 2006, 41(07): 551-555
YNG Xiu-wei;HUNG Hi-hu;ZHNG Peng;LIN Li-hong;ZHONG D-fng. Establishment of a Microbial Model with the Activity of Drug-Metabolizing Enzyme CYP2C9 [J]. Chinese Pharmaceutical Journal, 2006, 41(07): 551-555

参考文献

[1] . Biotechnol Adv, 2003, 21(1):3-39. [2] ZHANG D L, YANG Y F, LEAKEY E A, et al. Phase Ⅰ and Phase Ⅱ enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics[J] . FEMS Microbiol Lett, 1996, 138:221-226. [3] WACKETT L P, GIBSON D T. Metabolism of xenobiotic compounds by enzymes in cell extracts of the fungus Cunninghamella elegans[J] . Biochem J, 1982, 205(1):117-122. [4] HUANG H H, CHEN X Y, ZHONG D F. Selective biotransformation of propafenone by Cunninghamella blakesleana[J] . Asian J Drug Metab Pharmacokinet, 2001, 1(1):37-43. [5] WEBSTER R, PACEY M, WINCHESTER T, et al. Microbial oxidative metabolism of diclofenac:production of 4′-hydroxydiclofenac using Epiccocum nigrum IMI354292[J] . Appl Microbiol Biotechnol, 1998, 49(4):371-376. [6] KIM K A, PARK J Y. Inhibitory effect of glyburide on human cytochrome P450 isoforms in human liver microsomes[J] . Drug Metab Dispos, 2003, 31(9):1090-1092. [7] LEEMAN T, TRANSON C, DAYER P. Cytochrome P450TB (CYP2C):A major monooxygenase catalysing diclofenacs 4′-hydroxylation in human liver[J] .Life Sci, 1993, 52:29-34. [8] NAKAJIMA M, INOUE T, SHIMADA N, et al. Cytochrome P450 2C9 catalyzes indomethacin O-demethylation in human liver microsomes[J] . Drug Metab Dispos, 1998, 26(3):261-266. [9] SCHWARZ U L. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene[J] . Eur J Clin Invest, 2003, 33(suppl 2):23-30. [10] MA G L. Metabolism study of four drugs with Cunninghamella model [D] . Shenyang:Shenyang Pharmaceutical University, 2004. [11] ZHONG D F, SUN L, LIU L, et al. Microbial transformation of naproxen by Cunninghamella species[J] . Acta Pharmacol Sin, 2003, 24(5):442-447.

基金

国家863计划课题(2003AA2Z347C)

Accesses

Citation

Detail

段落导航
相关文章

/