纳米粒口服吸收跨肠上皮细胞膜机制的研究进展

何运杰, 奉建芳, 金一, 涂亮星

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (23) : 2138-2144.

PDF(1292 KB)
PDF(1292 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (23) : 2138-2144. DOI: 10.11669/cpj.2023.23.006
综述

纳米粒口服吸收跨肠上皮细胞膜机制的研究进展

  • 何运杰1, 奉建芳1,2, 金一1*, 涂亮星1*
作者信息 +

Advances in the Mechanism of Nanoparticles of Oral Absorption Across the Enterocyte

  • HE Yunjie1, FENG Jianfang1,2, JIN Yi1*, TU Liangxing1*
Author information +
文章历史 +

摘要

纳米粒递送药物能提高药物在胃肠道中的稳定性,增强药物在黏膜层的穿透,是众多药剂工作者的研究热点。然而,目前的研究大多局限在其整体药效结果,对于纳米粒在胃肠道的转运吸收机制研究仍然有限,研究纳米粒如何进入肠道细胞和胞内转运对纳米粒的设计与改造具有重要意义。本文通过阐述纳米粒被肠上皮细胞顶端侧摄取、胞内转运、基底侧胞吐这三个复杂的细胞内过程,介绍了纳米粒穿越肠上皮细胞膜进入体循环的途径与机制。了解纳米粒在细胞内复杂转运过程能为其合理设计提供参考和理论依据。

Abstract

Nanoparticle delivery of drugs can improve the stability of drugs in the gastrointestinal tract and enhance the penetration of drugs in the mucosal layer, which is the research focus of many pharmaceutical researcher. However, the current research is mostly limited to its overall efficacy results, and the research on the transport and absorption mechanism of nanoparticles in the gastrointestinal tract is still limited. Studying how nanoparticles enter intestinal cells and intracellular transport is of great significance to the design and transformation of nanoparticles. In this paper, the three complex intracellular processes of nanoparticles uptake by intestinal epithelial cells on the apical side, intracellular transport and basal side exocytosis are described, and the pathway and mechanism of nanoparticles entering the systemic circulation through intestinal epithelial cell membrane are introduced. Understanding the complex transport process of nanoparticles in cells can provide reference and theoretical basis for their rational design.

关键词

纳米粒 / 肠上皮细胞 / 细胞摄取 / 胞内转运 / 基底侧胞吐

Key words

nanoparticle / intestinal epithelial cell / cell uptake / intracellular transport / basolateral exocytosis

引用本文

导出引用
何运杰, 奉建芳, 金一, 涂亮星. 纳米粒口服吸收跨肠上皮细胞膜机制的研究进展[J]. 中国药学杂志, 2023, 58(23): 2138-2144 https://doi.org/10.11669/cpj.2023.23.006
HE Yunjie, FENG Jianfang, JIN Yi, TU Liangxing. Advances in the Mechanism of Nanoparticles of Oral Absorption Across the Enterocyte[J]. Chinese Pharmaceutical Journal, 2023, 58(23): 2138-2144 https://doi.org/10.11669/cpj.2023.23.006
中图分类号: R944   

参考文献

[1] IJAZ I, GILANI E, NAZIR A, et al. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles[J]. Green Chem Lett Rev, 2020, 13(3):59-81.
[2] SAKA R, CHELLA N. Nanotechnology for delivery of natural therapeutic substances: a review[J]. Environ Chem Lett, 2021, 19(2):1097-1106.
[3] CHENG H, CUI Z, GUO S, et al. Mucoadhesive versus Mucopenetrating nanoparticles for oral delivery of insulin[J]. Acta Biomater, 2021,135:506-519.
[4] ZOU M S, ZHOU L L, QIAO Y, et al. Research progress in co-delivery of anti-multidrug resistant small RNA and anti-tumor drugs with nanocarriers [J]. Chin Pharm J(中国药学杂志), 2018, 53(19):1621-1626.
[5] LIU H, LIANG X L, JIANG Q Y, et al. Effect of gastrointestinal mucus on transmembrane drug delivery and the research progress of oral drug delivery strategies [J]. Chin Pharm J(中国药学杂志), 2022, 57(3):176-180.
[6] JAIN H, CHELLA N. Methods to improve the solubility of therapeutical natural products: a review[J]. Environ Chem Lett, 2021, 19(1):111-121.
[7] LIU J, LENG P, LIU Y J. Oral drug delivery with nanoparticles into the gastrointestinal mucosa[J]. Fund Clin Pharmacol, 2021, 35(1):86-96.
[8] KAMALY N, YAMEEN B, WU J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release[J]. Chem Rev, 2016, 116(4):2602-2663.
[9] MAHMOODI N O, GHAVIDAST A, AMIRMAHANI N. A comparative study on the nanoparticles for improved drug delivery systems[J]. J Photochem Photobiol B-Biol, 2016, 162:681-693.
[10] NELEMANS L C, GUREVICH L. Drug delivery with polymeric nanocarriers-cellular uptake mechanisms[J]. Materials, 2020,13(2):366.DOI:10.3390/ma13020366.
[11] BABADI D, DADASHZADEH S, OSOULI M, et al. Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes[J]. J Controlled Release, 2020, 321:669-709.
[12] BELOQUI A, DES RIEUX A, PREAT V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier[J]. Adv Drug Deliv Rev, 2016, 106:242-255.
[13] GRADISNIK L, TRAPECAR M, RUPNIK M S, et al. HUIEC, Human intestinal epithelial cell line with differentiated properties: process of isolation and characterisation[J]. Wiener Klinische Wochenschrift, 2015, 127:S204-S209.
[14] REINHOLZ J, LANDFESTER K, MAILANDER V. The challenges of oral drug delivery via nanocarriers[J]. Drug Deliv, 2018, 25(1):1694-1705.
[15] AGRAHARI V, AGRAHARI V, MITRA A K. Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities[J]. Therapeu Deliv, 2016, 7(4):257-278.
[16] YU M R, YANG Y W, ZHU C L, et al. Advances in the transepithelial transport of nanoparticles[J]. Drug Discov Today, 2016, 21(7):1155-1161.
[17] TIAN Z H, MAI Y P, MENG T T, et al. Nanocrystals for improving oral bioavailability of drugs: intestinal transport mechanisms and influencing factors[J]. AAPS Pharmscitechnol, 2021, 22(5):179. DOI:10.1208/s12249-021-02041-7.
[18] CHEN M C, MI F L, LIAO Z X, et al. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules[J]. Adv Drug Deliv Rev, 2013, 65(6):865-879.
[19] SINGH B, MAHARIAN S, JIANG T, et al. Combinatorial approach of antigen delivery using M cell-homing peptide and mucoadhesive vehicle to enhance the efficacy of oral vaccine[J]. Mole Pharm, 2015, 12(11):3816-3828.
[20] O′HAGAN D T. Intestinal translocation of particulates: implications for drug and antigen delivery[J]. Adv Drug Deliv Rev, 1990, 5(3):265-285.
[21] MOOR A E, HARNIK Y, BEN-MOSHE S, et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis[J]. Cell, 2018, 175(4):1156. DOI:10.1016/j.cell.2018.08.063.
[22] JU Y P, GUO H, EDMAN M, et al. Application of advances in endocytosis and membrane trafficking to drug delivery[J]. Adv Drug Deliv Rev, 2020, 157:118-141.
[23] ELKIN S R, LAKODUK A M, SCHMID S L. Endocytic pathways and endosomal trafficking: a primer. [J]. Wiener Medizinische Wochenschrift (1946), 2016, 166(7/8):196-204.
[24] DONAHUE N D, ACAR H, WILHELM S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine[J]. Adv Drug Deliv Rev, 2019, 143:68-96.
[25] HUANG Y N, DING L, YAO C J, et al. Effect of transferrin on cellular uptake or expulsion of titanium dioxide nanoparticles[J]. Nano, 2020, 15(9):2050121. DOI:10.1142/S1793292020501210.
[26] PHUC L, TANIGUCHI A. Epidermal growth factor enhances cellular uptake of polystyrene nanoparticles by clathrin-mediated endocytosis[J]. Int J Mol Sci, 2017, 18(6):1301. DOI:10.3390/ijms18061301.
[27] PARTON R G. Caveolae: structure, function, and relationship to disease[J]. Ann Rev Cell Dev Biol, 2018, 34(1):111-136.
[28] YAMEEN B, CHOI W I, VILOS C, et al. Insight into nanoparticle cellular uptake and intracellular targeting[J]. J Controlled Release, 2014, 190:485-499.
[29] CAO D, TIAN S, HUANG H, et al. Divalent folate modification on PEG: an effective strategy for improving the cellular uptake and targetability of PEGylated polyamidoamine-polyethylenimine Copolymer[J]. Mol Pharm, 2015, 12(1):240-252.
[30] XIN X F, PEI X, YANG X, et al. Rod-shaped active drug particles enable efficient and safe gene delivery[J]. Adv Sci, 2017, 4(11):1700324. DOI:10.1002/advs.201700324.
[31] KUMARI S, SWETHA M G, MAYOR S. Endocytosis unplugged: multiple ways to enter the cell[J]. Cell Res, 2010, 20(3):256-275.
[32] CAVANAUGH K E, STADDON M F, MUNRO E, et al. RhoA mediates epithelial cell shape changes via mechanosensitive endocytosis[J]. Dev Cell, 2020, 52(2):152-166.
[33] CASAMENTO A, BOUCROT E. Molecular mechanism of Fast Endophilin-Mediated Endocytosis[J]. Biochem J, 2020, 477(12):2327-2345.
[34] DAY C A, BAETZ N W, COPELAND C A, et al. Microtubule motors power plasma membrane tubulation in clathrin-independent endocytosis[J]. Traffic, 2015, 16(6):572-590.
[35] VAN ACKER T, TAVERNIER J, PEELMAN F. The small GTPase Arf6: an overview of its mechanisms of action and of its role in host-pathogen interactions and innate immunity[J]. Int J Mol Sci, 2019, 20(9):2209. DOI:10.3390/ijms20092209.
[36] THOTTACHERRY J J, KOSMALSKA A J, KUMAR A, et al. Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells[J]. Nat Commun, 2018: 4217. DOI:10.1038/S41467-018-06738-5.
[37] JOSEPH J G, LIU A P. Mechanical regulation of endocytosis: new insights and recent advances[J]. Adv Biosys, 2020, 4(5):1900278. DOI:10.1002/adbi.201900278.
[38] CANTON J. Macropinocytosis: new insights into its underappreciated role in innate immune cell surveillance[J]. Front Immunol, 2018, 9:2286. DOI:10.3389/fimmu.2018.02286.
[39] BUCKLEY C M, KING J S. Drinking problems: mechanisms of macropinosome formation and maturation[J]. Febs J, 2017, 284(22):3778-3790.
[40] MEANS N, ELECHALAWAR C K, CHEN W R, et al. Revealing macropinocytosis using nanoparticles[J]. Mol Asp Med, 2022, 83:100993. DOI:10.1016/j.mam.2021.100993.
[41] LI Y X, PANG H B. Macropinocytosis as a cell entry route for peptide-functionalized and bystander nanoparticles[J]. J Controlled Release, 2021, 329:1222-1230.
[42] YHEE J Y, YOON H Y, KIM H, et al. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts[J]. Int J Nanomed, 2017, 12:6089-6105.
[43] SHILPI D, KUSHWAH V, AGRAWAL A K, et al. Improved Stability and Enhanced Oral Bioavailability of Atorvastatin Loaded Stearic Acid Modified Gelatin Nanoparticles[J]. Pharm Res, 2017, 34(7):1505-1516.
[44] ARAI M, KOMORI H, FUJITA D, et al. Uptake Pathway of Apple-derived Nanoparticle by Intestinal Cells to Deliver its Cargo[J]. Pharm Res, 2021, 38(3):523-530.
[45] ZHANG J, FIELD C J, VINE D, et al. Intestinal Uptake and Transport of Vitamin B-12-loaded Soy Protein Nanoparticles[J]. Pharm Res, 2015, 32(4):1288-1303.
[46] LIU G Y, ZHOU Y, CHEN L Y. Intestinal uptake of barley protein-based nanoparticles for beta-carotene delivery[J]. Acta Pharm Sin B(药学学报 英文), 2019, 9(1):87-96.
[47] DOU T Y, WANG J, HAN C K, et al. Cellular uptake and transport characteristics of chitosan modified nanoparticles in Caco-2 cell monolayers[J]. Int J Biol Macromole, 2019, 138:791-799.
[48] PATEL M, MUNDADA V, SAWANT K. Enhanced intestinal absorption of asenapine maleate by fabricating solid lipid nanoparticles using TPGS: elucidation of transport mechanism, permeability across Caco-2 cell line and in vivo pharmacokinetic studies[J]. Artficial Cells Nanomed Biotechnol, 2019, 47(1):144-153.
[49] LI Q, LIU C G, YU Y. Separation of monodisperse alginate nanoparticles and effect of particle size on transport of vitamin E[J]. Carbohydr Poly, 2015, 124:274-279.
[50] PENG Y Q, LI X Q, GU P X, et al. Curcumin-loaded zein/pectin nanoparticles: Caco-2 cellular uptake and the effects on cell cycle arrest and apoptosis of human hepatoma cells (HepG2)[J]. J Drug Deliv Sci Technol, 2022, 74:103497. DOI:10.1016/j.jddst.2022.103497.
[51] HE B, JIA Z R, DU W W, et al. The transport pathways of polymer nanoparticles in MDCK epithelial cells[J]. Biomaterials, 2013, 34(17):4309-4326.
[52] AKBARI A, LAVASANIFAR A, WU J P. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures[J]. Acta Biomater, 2017, 64:249-258.
[53] SONG H D, HE A J, GUAN X, et al. Fabrication of chitosan-coated epigallocatechin-3-gallate (EGCG)-hordein nanoparticles and their transcellular permeability in Caco-2/HT29 cocultures[J]. Int J Biol Macromole, 2022, 196:144-150.
[54] PARVEZ S, KAROLE A, MUDAVATH S L. Transport mechanism of hydroxy-propyl-beta-cyclodextrin modified solid lipid nanoparticles across human epithelial cells for the oral absorption of antileishmanial drugs[J]. Biochimica Et Biophysica Acta-General Subjects, 2022, 1866(8):130157. DOI:10.1016/j.bbagen.2022.130157.
[55] VILLASENOR R, LAMPE J, SCHWANINGER M, et al. Intracellular transport and regulation of transcytosis across the blood-brain barrier[J]. Cellular Mol Life Sci 2019, 76(6):1081-1092.
[56] BEHZADI S, SERPOOSHAN V, TAO W, et al. Cellular uptake of nanoparticles: journey inside the cell[J]. Chem Soc Rev, 2017, 46(14):4218-4244.
[57] NASLAVSKY N, CAPLAN S. The enigmatic endosome-sorting the ins and outs of endocytic trafficking[J]. J Cell Sci, 2018, 131(13): JCS216499. DOI:10.1242/jcs.216499.
[58] ZHANG J X, CHANG D F, YANG Y, et al. Systematic investigation on the intracellular trafficking network of polymeric nanoparticles[J]. Nanoscale, 2017, 9(9):3269-3282.
[59] YUAN W, SONG C. The Emerging Role of Rab5 in Membrane Receptor Trafficking and Signaling Pathways. [J]. Biochem Res Int, 2020, 2020:4186308. DOI:10.1155/2020/4186308.
[60] ZEIGERER A, GILLERON J, BOGORAD R L, et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo[J]. Nature, 2012, 485(7399):465-470.
[61] MAJZOUB R N, CHAN C L, EWERT K K, et al. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events[J]. Biochimica Et Biophysica Acta-Biomembranes, 2015, 1848(6):1308-1318.
[62] GRANT B D, DONALDSON J G. Pathways and mechanisms of endocytic recycling[J]. Nat Rev Mol Cell Biol, 2009, 10(9):597-608.
[63] BAY A, SCHREINER R, BENEDICTO I, et al. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells[J]. Nat Commun, 2016, 7: 11550. DOI:10.1038/ncomms11550.
[64] IRABUTU M J, GARNER T, MONTIEL-DUARTE C. Revising Endosomal Trafficking under Insulin Receptor Activation[J]. Int J Mol Sci, 2021, 22(13): 6978. DOI:10.3390/ijms22136978.
[65] REDPATH G, BETZLER V M, ROSSATTI P, et al. Membrane Heterogeneity Controls Cellular Endocytic Trafficking[J]. Front Cell Dev Biol, 2020, 8: 757. DOI:10.3389/fcell.2020.00757.
[66] TAGUCHI T. Emerging roles of recycling endosomes[J]. J Biochem, 2013, 153(6):505-510.
[67] CHRIST L, RAIBORG C, WENZEL E M, et al. Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery[J]. Trends Biochem Sci, 2017, 42(1):42-56.
[68] GRUENBURG J. Life in the lumen: The multivesicular endosome[J]. Traffic, 2020, 21(1):76-93.
[69] CRUZ D L, PIPALIA N, MAO S, et al. Inhibition of Histone Deacetylases 1, 2, and 3 Enhances Clearance of Cholesterol Accumulation in Niemann-Pick C1 Fibroblasts [J]. ACS pharmacol Transl Sci, 2021, 4(3):1136-1148.
[70] OSTROWSKI M, CARMO N B, KRUMEICH S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway[J]. Nat Cell Biol, 2010, 12(1):19-61.
[71] CHOU L, MING K, CHAN W. Strategies for the intracellular delivery of nanoparticles[J]. Chem Socy Revs, 2011, 40(1):233-245.
[72] WANG T R, LUO Y C. Biological fate of ingested lipid-based nanoparticles: current understanding and future directions[J]. Nanoscale, 2019, 11(23):11048-11063.
[73] CHAI G H, XU Y K, CHEN S Q, et al. Transport Mechanisms of Solid Lipid Nanoparticles across Caco-2 Cell Monolayers and their Related Cytotoxicology[J]. ACS Appl Mater Interfaces, 2016, 8(9):5929-5940.
[74] HE B, LIN P, JIA Z R, et al. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells[J]. Biomaterials, 2013, 34(25):6082-6098.
[75] SALAH E, ABOUELFETOUH M M, PAN Y H, et al. Solid lipid nanoparticles for enhanced oral absorption: a review[J]. Colloids Surfaces B-Biointerfaces, 2020, 196:111305. DOI:10.1016/j.colsurfb.2020.111305.
[76] WU L, BAI Y L, LIU M, et al. Transport Mechanisms of Butyrate Modified Nanoparticles: Insight into “Easy Entry, Hard Transcytosis” of Active Targeting System in Oral Administration[J]. Mol Pharm, 2018, 15(9):4273-4283.
[77] ZHUANG J, WANG D D, LI D, et al. The influence of nanoparticle shape on bilateral exocytosis from Caco-2 cells[J]. Chin Chem Lett(中国化学快报), 2018, 29(12):1815-1818.
[78] LIU X, WU R N, LI Y T, et al. Angiopep-2-functionalized nanoparticles enhance transport of protein drugs across intestinal epithelia by self-regulation of targeted receptors[J]. Biomater Sci, 2021, 9(8):2903-2916.
[79] XING L Y, ZHENG Y X, YU Y L, et al. Complying with the physiological functions of Golgi apparatus for secretory exocytosis facilitated oral absorption of protein drugs[J]. J Mater Chem B, 2021, 9(6):1707-1718.
[80] ZHANG R Y, DENG H L, LIN Y X, et al. A common strategy to improve transmembrane transport in polarized epithelial cells based on sorting signals: Guiding nanocarriers to TGN rather than to the basolateral plasma membrane directly[J]. J Controlled Release, 2021, 339:430-444.

基金

国家自然科学基金项目资助(81960717);江西省主要学科学术和技术带头人项目资助(20212BCJL23060);江西中医药大学“1050”青年人才工程项目资助(5142001012);江西中医药大学创新团队项目资助(CXTD22004)
PDF(1292 KB)

365

Accesses

0

Citation

Detail

段落导航
相关文章

/