南方医科大学药学院, a. 药用生物材料课题组; b. 广东省新药筛选重点实验室, 广州 510515
Formulation Optimization of Alginate mPEG-b-PLGA Nanoparticles by Box-Behnken Response Surface Method
CHEN Ting-tinga,b, LI Shun-yinga,b, QIN Ting-tinga,b, ZENG Qing-binga,b*
a. Biomaterial Research Center; b. Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
Abstract:OBJECTIVE To optimize the formulation of alginate mPEG-b-PLGA nanoparticles by Box-Behnken response surface method. METHODS Using synthetic 10% mPEG-b-PLGA as nanoparticles matrix materials, the insulin-loaded alginate mPEG-b-PLGA nanoparticles were prepared by modified double emulsion-solvent evaporation method.To optimize the formulation,the mass ratio of insulin to polymer,the volume ratio of oil phase to external water and the concentration of poloxamer 188(F68) were selected as independent variables, with encapsulation efficiency(EE%), loading capacity(LC%) as the dependent variables.The formula was optimized by Box-Behnken design and response surface methodology.The particles size, polydispersity index(PDI), Zeta potential and morphology of optimized nanoparticles were measured by dynamic light scattering(DLS), electrophoretic light scattering(ELS) and transmission electron microscope(TEM), respectively.The in vitro release profile of nanoparticles was investigated. RESULTS =The optimal formulation was as follows:the mass ratio of insulin to mPEG-b-PLGA was 14.67∶100, the oil phase to external water ratio was 1∶3.32 and F68(W/V) concentration was 2.01%, respectively. The entrapment efficiency, the loading capacity, average particles size and Zeta potentials were(83.61±0.38)%,(10.90±0.23)%,(271.8±3.5) nm and(-54.27±2.75) mV, respectively, which correspond closely to the predicted values.The optimized insulin-loaded nanoparticles performed good sustained release property in pH 7.4 medium. CONCLUSION The Box-Behnken design and response surface methodology is an effective and efficient method, which can be applied in the formula optimization of alginate mPEG-b-PLGA nanoparticles preparation.The optimized nanoparticles can be served as a promising insulin or proteins drug nanocarriers for its good sustained release property.
GUARIGUATA L, WHITING D R, HAMBLETON I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pr, 2014, 103(2):137-149.
[2]
DING D, ZHU Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng:C, 2018,(92):1041-1060.
[3]
MENON J U, RAVIKUMAR P, PISE A, et al. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater, 2014, 10(6):2643-2652.
[4]
ALIBOLANDI M, ALABDOLLAH F, SADEGHI F, et al. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: in vitro and in vivo evaluation. J Controlled Release, 2016, 227:58-70.
[5]
ALBISA A, PIACENTINI E, SEBASTIAN V, et al. Preparation of drug-loaded PLGA-PEG nanoparticles by membrane-assisted nanoprecipitation. Pharm Res Dordr, 2017, 34(6):1296-1308.
[6]
GUAN Q, SUN S, LI X, et al. Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicrosideand hydroxytyrosol. J Mater Sci:Mater Med, 2016,27(24):1-13.
[7]
SONIA T A, SHARMA C P. An overview of natural polymers for oral insulin delivery. Drug Discov Today, 2012, 17(13-14):784-792.
[8]
VOZZA G, DANISH M, BYRNE H J, et al. Application of Box-Behnken experimental design for the formulation and optimisation of selenomethionine-loaded chitosan nanoparticles coated with zein for oral delivery. Int J Pharm, 2018, 551(1-2):257-269.
[9]
IGLESIAS N, GALBIS E, DíAZ-BLANCO M J, et al. Loading studies of the anticancer drug camptothecin into dual stimuli-sensitive nanoparticles. Stability scrutiny. Int J Pharm, 2018, 550(1-2):429-438.
[10]
LIU B L, ZHU Z J, LIU Y Y, et al. Formulation optimization of curcumin- catanionic solid lipid nanoparticles by Box-Behnkendesigns . West China J Pharm Sci(华西药学杂志), 2017,32(5):471-474.
[11]
MA Y L, ZHAO F, PANG G X, et al. Optimization of prescription of ambroxol hydrochloride sandwich osmotic pump tablets by box-behnken design-response surface method. Chin Pharm J(中国药学杂志), 2016, 51(12):1006-1013.
[12]
LOCATELLI E, COMES FRANCHINI M. Biodegradable PLGA-b-PEG polymeric nanoparticles:synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res, 2012, 14(12):1-17.
[13]
ZHANG Y, YUAN C, JIAO J, et al. Preparation of MePEG-PLGA nanoparticles by modified-self-emulsion solvent evaporation method. J Instrum Anal(分析测试学报), 2008,27(9):960-963.
[14]
ZHANG K, TANG X, ZHANG J, et al. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Controlled Release, 2014, 183:77-86.
[15]
LI J M, LI R R, TIAN J Z. Optimization of formulation and process of paclitaxel mPEG-PDLLA nanoparticles by Box-Behnken response surface methodology. Chin New Drugs J(中国新药杂志), 2018,27(8):927-933.
[16]
ZENG H, WANG Z, FANG M, et al. Preparation of pDNA-loaded thiolated chitosan nanoparticles and optimization by using Box-Behnken design and response surface method. J Huaqiao Univ(Nat Sci)(华侨大学学报:自然科学版), 2017,38(5):676-681.
[17]
ELMIZADEH H, KHANMOHAMMADI M, GHASEMI K, et al. Preparation and optimization of chitosan nanoparticles and magnetic chitosan nanoparticles as delivery systems using Box-Behnken statistical design. J Pharm Biomed, 2013, 80:141-146.
[18]
CASAULT S, SLATER G W. Systematic characterization of drug release profiles from finite-sized hydrogels. Physica A:Statist Mech Its Appl, 2008, 387(22):5387-5402.
[19]
PAPADOPOULOU V, KOSMIDIS K, VLACHOU M, et al. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm, 2006, 309(1-2):44-50.
[20]
VILLALOBOS R, CORDERO S, MARIA VIDALES A, et al. In silico study on the effects of matrix structure in controlled drug release. Physica A:Statist Mech Its Appl, 2006, 367:305-318.
[21]
GUAN Q X, YU X, LU S W, et al. Formulation and preparation optimization for mPEG-PLGA nanoparticles encapsulated with syringopicroside and hydroxytyrosol. Chin Tradit Pat Med(中成药), 2017,39(12):2508-2512.
[22]
ZANG J N, HU Y Q, ZANG J W, et al. Preparation of the oral self-microwmulsion by effective method of Box-Behnken response surface method. West China J Pharm Sci(华西药学杂志), 2018,33(4):359-363.