Basic & Clinical Medicine ›› 2021, Vol. 41 ›› Issue (9): 1360-1365.
• Mini Reviews • Previous Articles Next Articles
YAN Ting-ting1,2, XUE Jing1*
Received:
2020-04-15
Revised:
2020-10-15
Online:
2021-09-05
Published:
2021-09-02
Contact:
*jingxue@zju.edu.cn
CLC Number:
YAN Ting-ting, XUE Jing. Research progress of clinical effects of anti-Ro52/TRIM21 antibody in connective tissue diseases[J]. Basic & Clinical Medicine, 2021, 41(9): 1360-1365.
[1]Ogawa-Momohara M, Muro Y, Mitsuma T, et al. Clinical characteristics of anti-Ro52α and anti-Ro52β antibodies in dermatomyositis/polymyositis[J]. J Dermatol Sci, 2019, 96: 50-52. [2]Zampeli E, Mavrommati M, Moutsopoulos HM, et al. Anti-Ro52 and/or anti-Ro60 immune reactivity: autoantibody and disease associations[J]. Clin Exp Rheumatol, 2020, 38: 1-8. [3]Valor L, Schenker H, Hagen M, et al. SAT0210 the anti-Ro52 prevalence in the Sjögren's syndrome picture:a single center cross sectional study[C]. Madrid:EULAR,2019:12-15. [4]Pinal-Fernandez I, Casal-Dominguez M, Huapaya JA, et al. A longitudinal cohort study of the anti-synthetase syndrome: increased severity of interstitial lung disease in black patients and patients with anti-PL7 and anti-PL12 autoantibodies[J]. Rheumatology, 2017, 56: 999-1007. [5]Ohashi K, Sada KE, Nakai Y, et al. Cluster Analysis Using anti-aminoacyl-tRNA synthetases and SS-A/Ro52 antibodies in patients with polymyositis/dermatomyositis[J]. J Clin Rheumatol, 2019, 25: 246-251. [6]Li L, Wang H, Wang H, et al. Myositis-specific autoantibodies in dermatomyositis/polymyositis with interstitial lung disease[J]. J Neurol Sci, 2019, 397: 123-128. [7]Bauhammer J, Blank N, Max R, et al. Rituximab in the treatment of Jo1 antibodyassociated antisynthetase syndrome: anti-Ro52 positivity as a marker for severity and treatment response[J]. J Rheumatol, 2016, 43: 1-9. [8]Srivastava P, Dwivedi S, Misra R. Myositis-specific and myositis-associated autoantibodies in Indian patients with inflammatory myositis[J]. Rheumatol INT, 2016, 36: 935-943. [9]Chen F, Zuo Y, Li S, et al. Clinical characteristics of dermatomyositis patients with isolated anti-Ro-52 antibody associated rapid progressive interstitial lung disease: Data from the largest single Chinese center[J]. Respir Med, 2019, 155: 127-132. [10]Ghirardello A, Rampudda M, Ekholm L, et al. Diagno-stic performance and validation of autoantibody testing in myositis by a commercial line blot assay[J]. Rheumatology, 2010, 49: 2370-2374. [11]Sabbagh S, Pinal-Fernandez I, Kishi T, et al. Anti-Ro52 autoantibodies are associated with interstitial lung disease and more severe disease in patients with juvenile myositis[J]. Ann Rheum Dis, 2019, 78: 988-995. [12]Patterson KA, Roberts-Thomson PJ, Lester S, et al. Interpretation of an extended autoantibody profile in a well-characterized australian systemic sclerosis (scleroderma) cohort using principal components analysis[J]. Arthritis Rheumatol, 2015, 67: 3234-3244. [13]Wodkowski M, Hudson M, Proudman S, et al. Monospecific anti-Ro52/TRIM21 antibodies in a tri-nation cohort of 1574 systemic sclerosis subjects: evidence of an association with interstitial lung disease and worse survival[J]. Clin Exp Rheumatol, 2015, 33: S131-S135. [14]Priora M, Manetta T, Scarati M, et al. Serological and clinical profile of systemic sclerosis: Analysis in a cohort of patients from a single center in Northern Italy[J]. G Ital Dermatol Venereol, 2018, 153: 33-38. [15]Liaskos C, Marou E, Simopoulou T, et al. Disease-related autoantibody profile in patients with systemic sclerosis[J]. Autoimmunity, 2017, 50: 1-8. [16]Jorge I, Sepúlveda R, Kvarnström M, et al. Difference in clinical presentation between women and men in incident primary Sjögren's syndrome[J]. Biol Sex Differ, 2017, 8: 1-8. [17]Budde P, Zucht HD, Vordenbäumen S, et al. Multiparametric detection of autoantibodies in systemic lupus erythematosus[J]. Lupus, 2016, 25: 812-822. [18]Gunnarsson R, El-Hage F, Aaløkken TM, et al. Associations between anti-Ro52 antibodies and lung fibrosis in mixed connective tissue disease[J]. Rheumatology, 2016, 55: 103-108. [19]Shiboski CH, Shiboski SC, Seror R, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren's syndrome: a consensus and data-driven methodology involving three international patient cohorts[J]. Ann Rheum Dis, 2017, 69: 9-16. [20]Alonso-Larruga A, Bustabad S, Navarro-Gonzálvez JA, et al. Isolated Ro52 antibodies as immunological marker of a mild phenotype of undifferentiated connective tissue diseases[J]. Int J Rheumatol, 2017, 2017: 1-6. [21]Sclafani A, D'Silva KM, Little BP, et al. Presentations and outcomes of interstitial lung disease and the anti-Ro52 autoantibody[J]. Resp Res, 2019, 20: 2-9. [22]Hudson M, Pope J, Mahler M, et al. Clinical significance of antibodies to Ro52/TRIM21 in systemic sclerosis[J]. Arthritis Res Ther, 2012, 14: 1-9. [23]Sánchez-Montalvá A, Fernández-Luque A, Simeón CP, et al. Anti-SSA/Ro52 autoantibodies in scleroderma: results of an observational, cross-sectional study[J]. Clin Exp Rheumatol, 2014, 32: S177-S182. [24]王超杰,姜海,夏笑笑,等.抗Ro52抗体与Ⅰ型自身免疫性肝炎患者病情的相关性研究[J].中国中西医结合消化杂志,2017,7:532-536. [25]Salomonsson S, Dzikaite V, Zeffer E, et al. A Population-based investigation of the autoantibody profile in mothers of children with atrioventricular block[J]. Scand J Immunol, 2011, 74: 511-517. [26]Lazzerini PE, Capecchi PL, Acampa M, et al. Anti-Ro/SSA-associated corrected QT interval prolongation in adults: the role of antibody level and specificity[J]. Arthritis Care Res, 2011,63: 1463-1470. [27]Tangri V, Hewson C, Baron M, et al. Associations with organ involvement and autoantibodies in systemic sclerosis: results from the Canadian Scleroderma Research Group (CSRG)[J]. Open J Rheumatol Autoimmune Dis, 2013, 3: 113-118. |
[1] | YUAN Xun, WANG Yuyang, MENG Shu. DDX60 promotes expression of type Ⅰ interferon in PBMCs from patients with systemic lupus erythematosus [J]. Basic & Clinical Medicine, 2024, 44(7): 959-964. |
[2] | GAO Lu, CAI Menghua, XU Yi, HE Wei, CHEN Hui, ZHANG Jianmin. Purification and in vitro functional validation of exosomes from 293T cells with over-expressed membrane-localized IL-3 [J]. Basic & Clinical Medicine, 2024, 44(7): 947-953. |
[3] | CHEN Xiaotian, CHEN Chong, LUO Yunping. Impact of MAFB on polarization and function of tumor associated macrophages [J]. Basic & Clinical Medicine, 2024, 44(7): 965-973. |
[4] | LI Yinghui, XU Yi, ZHANG Jianmin, CHEN Hui, HE Wei. Therapeutic effect of CAR-γδT cells targeting at BCMA in multiple myeloma [J]. Basic & Clinical Medicine, 2024, 44(6): 763-771. |
[5] | SUN Xu, LI Shunshun, WANG Dianheng, WANG Zhenfeng. Bioinformatics analysis of differential expression of CD44 in glioblastomas and cell experimental validation [J]. Basic & Clinical Medicine, 2024, 44(6): 800-808. |
[6] | YUE Lingling, WANG Zihui, LI Xiaoqin, LI Lifeng, ZHANG Wancun, YU Zhidan. Regulation of host immune function by gut microbiota-derived secondary bile acids [J]. Basic & Clinical Medicine, 2024, 44(6): 887-891. |
[7] | LU Wenqi, WAN Lin. Research progress of endothelial injury in the development of graft-versus-host disease [J]. Basic & Clinical Medicine, 2023, 43(11): 1728-1732. |
[8] | HUANG Lichenlu, ZHANG Jiarui, ZHENG Yongqin, HE Jundong. Research progress of sodium-glucose cotransporter 2 inhibitor in non-alcoholic fatty liver disease [J]. Basic & Clinical Medicine, 2023, 43(10): 1594-1598. |
[9] | ZHANG Chen, PU Xiang, SU Jin, TANG Yilian, ZENG Xianfa. Advances in the mechanism of alveolar macrophage-induced immune response to inflammation injury of lung tissue [J]. Basic & Clinical Medicine, 2023, 43(10): 1585-1589. |
[10] | HU Ning, HUANG Hannian, XIA Daozong. Comparison of acute immunological liver injury models in two different species of mice [J]. Basic & Clinical Medicine, 2023, 43(9): 1364-1368. |
[11] | ZHANG Xiaowan, KANG Xia, YAO Xiaoying, XIE Fang, LI Ying. Silencing SF3B1 promotes apoptosis and inhibits proliferation and invasion of human lung cancer cell line A549 [J]. Basic & Clinical Medicine, 2023, 43(8): 1265-1270. |
[12] | HAN Jingjing, WANG Xuanruo, ZHANG Xinyi, GAO Han, CHENG Xiumei, YANG Liucai, QU Xuebin. Transcription factor CREB regulates the expression of miR-30a in mouse CD4+ lymphocytes [J]. Basic & Clinical Medicine, 2023, 43(8): 1229-1233. |
[13] | ZOU Yuxiang, TANG Hui. Research progress on the role of TLR2 in the development of gastrointestinal cancer [J]. Basic & Clinical Medicine, 2023, 43(8): 1304-1308. |
[14] | GAO Yuan, ZHENG Gang, QI Jing, ZHANG Feng. Progress of NLRP3 inflammasome in the pathogenesis of heart disease [J]. Basic & Clinical Medicine, 2023, 43(7): 1162-1166. |
[15] | LI Xiaona, QI Xianmei, ZHANG Tiantian, WANG Jing. Silencing Fcgr3 decreases SiO2-induced inflammatory cytokines expression in mouse alveolar macrophage cell line MH-S [J]. Basic & Clinical Medicine, 2023, 43(6): 904-908. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 450
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 379
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||