[1] Luk AC, Chan WY, Rennert OM, et al. Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies[J]. Reproduction, 2014, 147: 131-141. [2] Green CD, Ma Q, Manske GL, et al. A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-seq[J]. Dev Cell, 2018, 46: 651-667. [3] Wang M, Liu X, Chang G, et al. Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis[J]. Cell Stem Cell, 2018, 23: 599-614. [4] Guo J, Grow EJ, Yi C, et al. Chromatin and single-cell RNA-seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development[J]. Cell Stem Cell, 2017, 21: 533-546. [5] Chen Y, Zheng Y, Gao Y, et al. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis[J]. Cell Res, 2018, 28: 879-896. [6] Hermann BP, Cheng K, Singh A, et al. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids[J]. Cell Rep, 2018, 25: 1650-1667. [7] Hentze MW, Castello A, Schwarzl T, et al. A brave new world of RNA-binding proteins[J]. Nat Rev Mol Cell Biol, 2018, 19: 327-341. [8] Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins[J]. Nat Rev Genet, 2014, 15: 829-845. [9] Dai P, Wang X, Gou LT, et al. A translation-activating function of MIWI/piRNA during mouse spermiogenesis[J]. Cell, 2019, 179: 1566-1581. [10] Li H, Liang Z, Yang J, et al. DAZL is a master translational regulator of murine spermatogenesis[J]. Natl Sci Rev, 2019, 6: 455-468. [11] Li K, Xu J, Luo Y, et al. Panoramic transcriptome analysis and functional screening of long noncoding RNAs in mouse spermatogenesis[J]. Genome Res, 2021, 31: 13-26. [12] Mikedis MM, Fan Y, Nicholls PK, et al. DAZL mediates a broad translational program regulating expansion and differentiation of spermatogonial progenitors[J]. Elife, 2020, 9. doi: 10.7554/eLife.56523. [13] Sassone-Corsi P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis[J]. Science, 2002, 296: 2176-2178. [14] Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis[J]. J Androl, 2012, 33: 309-337. [15] Gou LT, Kang JY, Dai P, et al. Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis[J]. Cell, 2017, 169: 1090-1104. [16] Kavarthapu R, Anbazhagan R, Raju M, et al. Targeted knock-in mice with a human mutation in GRTH/DDX25 reveals the essential role of phosphorylated GRTH in spermatid development during spermatogenesis[J]. Hum Mol Genet, 2019, 28: 2561-2572. |